

Full Stack FastAPI,
React, and MongoDB

Build Python web applications with the FARM stack

Marko Aleksendrić

BIRMINGHAM—MUMBAI

Full Stack FastAPI, React, and MongoDB
Copyright © 2022 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, without the prior written permission of the publisher, except in the case
of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express
or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable
for any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and
products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot
guarantee the accuracy of this information.

Group Product Manager: Pavan Ramchandani

Publishing Product Manager: Jane D’Souza

Senior Editor: Aamir Ahmed

Technical Editor: Simran Udasi

Copy Editor: Safis Editing

Project Coordinator: Manthan Patel

Proofreader: Safis Editing

Indexer: Rekha Nair

Production Designer: Alishon Mendonca

Marketing Coordinator: Anamika Singh

First published: August 2022

Production reference: 1290822

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-80323-182-2

www.packt.com

http://www.packt.com

To my daughter Tara and to my son Luka, for being my driving force and my
guiding light. To my wife Tanja, for being my loving life partner.

– Marko Aleksendrić

C o n t r i b u t o r s

About the author
Marko Aleksendrić is a graduate of the University of Belgrade, Serbia, with a Ph.D. and also a Master’s
degree in control engineering. He is a self-taught full-stack developer and former scientist and works
as an analyst in a trade promotion agency.

He started his programming journey with Visual Basic and Fortran 77 for numeric simulations.
Upon discovering Python (version 2.3), he started using it for all kinds of automation tasks: building
reporting pipelines and exporting measurement data from instruments into Excel or similar user-
friendly reporting tools. Nowadays, he splits his time between business consulting and analytics,
full-stack web development, and data visualization.

I want to thank the people who have been close to me and supported me: first
and foremost, my family, but also the incredibly professional and friendly Packt

Publishing team – first and foremost, Aamir Ahmed, but also Jane D’Souza,
Apeksha Shetty, and all the others. They have really welcomed me as family

and guided me through this incredible journey.

About the reviewer
Eleke Great (BEng) is a senior Python developer with hands-on experience with the Django REST
framework and FastAPI for creating both large- and small-scale APIs for high-profile organizations
and startup companies in the US and Europe. Other areas of expertise are React.js, Next.js, Tailwind
CSS, Google Cloud Platform, CI/CD, MongoDB, PostgresDB, system design, and database architecture.
He is also a full-stack blockchain developer with hands-on experience with web3 with solidity, web4,
and web5 with Rust on Solana.

This book is a complete zero-to-hero guide to the FARM stack. The author took
the time to break down React hooks, FastAPI routes and file structure, and

MongoDB to the point that someone from a non-programming background can
understand it and get up and running.

Parth Patel is a Security DevOps Engineer living and working in Toronto, Canada. Over the past
six years, he has worked for companies delivering software in a variety of languages such as Python,
C#, and JavaScript. He has been working with Python since 2018 and is one of the early adopters of
FastAPI. Currently, he works as Team Lead at a financial institution in Toronto delivering innovative
solutions to improve the security posture of the institution. In his free time, he likes to enjoy traveling,
hiking, and watching movies with his family and friends.

I would personally like to thank my parents for believing in me and giving me
an opportunity to pursue the education I want.

Table of Contents

Preface xiii

Part 1 – Introduction to the FARM Stack and the
Components

1
Web Development and the FARM Stack 3

What is the FARM stack and how
does it fit together? 4
Why the FARM stack? 7
Evolution in Web Development 7

Why use MongoDB? 8
Introducing FastAPI 9

REST APIs 9
What is FastAPI? 10
Python and REST APIs 12

The frontend – React 13
Why use React? 13

Summary 17

2
Setting Up the Document Store with MongoDB 19

Technical requirements 20
The structure of a MongoDB database 20
Documents 20
Collections and databases 24

Installing MongoDB and friends 25

Installing MongoDB and Compass on Windows 26
Installing MongoDB and Compass on Linux
– Ubuntu 32
Setting up Atlas 33
Importing (and exporting) data with Compass 39

Table of Contentsviii

MongoDB querying and CRUD
operations 43
Querying MongoDB 45
Creating new documents 49
Updating documents 49

Deleting documents 50
Cursors 51

Aggregation framework 52
Summary 56

3
Getting Started with FastAPI 57

Technical requirements 58
Python setup 58
Virtual environments 58
Code Editors 59
REST Clients 59
Installing the necessary packages 60

FastAPI in a nutshell 61
Starlette 61
Python type hinting 61
Pydantic 62
Asynchronous I/O 65

Standard REST API stuff 66

How does FastAPI speak REST? 67
Automatic documentation 70

Let’s build a showcase API! 71
Retrieving path and query parameters 71
The request body – the bulk of the data 76
The request object 81
Cookies and headers, form data, and files 81
FastAPI response customization 85

Summary 87

4
Setting Up a React Workflow 89

Technical requirements 90
Let’s Create (a) React App 90
Tailwind CSS and Installation 91

JSX and the Components – the
building blocks 93
Components 95

React Hooks, events, and state 102
Creating stateful variables with useState 102

Communicate with APIs using
useEffect 105
Exploring React Router and other
goodies 111
Summary 112

Table of Contents ix

Part 2 – Parts of the Stack Working Together

5
Building the Backend for Our Application 115

Technical requirements 116
Introducing our app 116
Creating a MongoDB instance for
our app 117

Creating our FastAPI backend 117
Deployment to Heroku 131
Summary 133

6
Building the Frontend of the Application 135

Technical requirements 136
Creating our Frontend with React 136
Setting up React and Tailwind 136
Installing and setting up React Router 6 137
Layout and components 139

Creating the pages functionalities 142
Creating the car details and the update/delete
page 152

Summary 158

7
Authentication and Authorization 159

Technical requirements 160
Understanding JSON Web Token –
our key to security 160
FastAPI backend with users and
relationships 161
Creating a User model and MongoDB
relationships 161

Authenticating the users in React 177
Summary 192

Table of Contentsx

Part 3 – Deployment and Final Thoughts

8
Server-Side Rendering and Image Processing with
FastAPI and Next.js 197

Technical requirements 198
Introduction to our Sample App 198
Managing images and files in the
backend 199
Creating a Cloudinary account 199
Creating a new MongoDB database and
collections 200
Updating the FastAPI REST API 200
Integrating Python Pillow for image processing 208

Introduction to Next.js and our

frontend project 209
Scaffolding the application 210
Authentication with API routes and httpOnly
cookies in Next.js 217
Creating the page for inserting new cars 230
Creating the car list page 234
Creating statically generated pages for
individual cars 237

Deployment to Heroku and Vercel 240
Summary 242

9
Building a Data Visualization App with the FARM Stack 243

Technical requirements 244
The specification 244
Creating the backend 244
The MongoDB Aggregation Framework 250

Building the frontend with SWR and

Charts.js 253
React pagination and SWR 256
Building the dashboard with Chart.js 261
Background Tasks 268

Summary 278

10
Caching with Redis and Deployment on
Ubuntu (DigitalOcean) and Netlify 279

Deploying FastAPI on DigitalOcean
(or really any Linux server!) 280
Adding caching with Redis 288

Deploying the Frontend on Netlify 292
Summary 295

Table of Contents xi

11
Useful Resources and Project Ideas 297

MongoDB considerations 298
FastAPI and Python considerations 299
Testing FastAPI applications 300

React practices 300
Other topics 301
Authentication and authorization 301
Data visualization and the FARM stack 301

Relational databases 302

Some project ideas to get started 302
Old School Portfolio website 302
React Admin Inventory 302
Plotly-Dash or Streamlit – like exploratory
data analysis application 303
A document automation pipeline 303

Summary 304

Index 305

Other Books You May Enjoy 314

Preface

FastAPI is a Python-based asynchronous web framework for building fast and performant APIs
(REST or GraphQL) that has seen great growth in popularity over the last couple of years. It enables
developers to create flexible and powerful standards-compliant APIs as it is based on Python type
hinting, it provides automatic documentation out of the box, and its performance is comparable to
APIs developed in Go or Node.js.

React is arguably still the most popular solution for building user interfaces on the web. It is a library
that adopts a declarative approach and simplifies the workflow by allowing developers to use only
JavaScript or JSX, without a templating engine. With frameworks such as Next.js and a Node.js server,
React enables us to create server-side generated or statically created web pages, while it is relatively
easy to reuse an existing code base in React Native (for native applications), and with the plethora
of third-party libraries, one of the strongest online communities, and the introduction of the Hooks
mechanism, it has you covered whatever your specific need might be.

MongoDB is the most popular NoSQL database solution and offers numerous benefits – it is flexible
and schemaless, it’s ideal for rapid prototyping, and it is also highly scalable and fast.

Combined together, these technologies blend very well, and though they bear a funny acronym (the
FARM stack), they allow for a pleasant and fast developer experience, offer speed and flexibility, but
most importantly, the opportunity to peruse the wide Python ecosystem, which is suitable for the
most diverse problems – from data science and machine learning to analytics and image processing,
task automation, and more.

This book aims to teach you how to design, build and deploy fast, scalable, standards-compliant, and
flexible full-stack applications in an efficient and, hopefully, fun way. By the end of this book, you
should be comfortable modeling the most diverse business problems with fluid requirements through
a set of modern technologies and online services.

Who this book is for
This book is for backend and frontend JavaScript and Python developers or really anyone who wants
to or needs to create web applications or sites within a flexible environment – websites that can
include data processing or automation pipelines, but also simple websites for structured content.
Basic knowledge of Python and JavaScript is assumed, while a general knowledge of the basics of the
HTTP protocol and REST API concepts will be beneficial but is not mandatory. Minimal knowledge
of CSS and HTML will be helpful.

Prefacexiv

What this book covers
Chapter 1, Web Development and the FARM Stack, starts with a brief introduction to the problems of
the modern web and provides an analysis of the components of the stack and their benefits.

Chapter 2, Setting Up the Document Store with MongoDB, provides a quick but operative introduction
to MongoDB through simple illustrative examples that will enable you to start prototyping quickly.

Chapter 3, Getting Started with FastAPI, explores the basics of the FastAPI framework, as well as
the foundations upon which it is built: types, its asynchronous nature, and how it handles typical
web-related tasks.

Chapter 4, Setting Up a React Workflow, is a very basic introduction to the React library and its basic
features that enable developers to create simple or complex user interfaces. A brief introduction to
JSX, React Hooks, and the handling of state and events is provided.

Chapter 5, Building the Backend for Our Application, teaches you how to create a basic backend with
CRUD functionality using FastAPI and MongoDB and how to make it available through a Heroku
deployment.

Chapter 6, Building the Frontend of the Application, continues the previous example and shows how
to build a minimal React-based frontend for our application using the latest version of React Router
for navigation.

Chapter 7, Authentication and Authorization, provides a practical introduction to JWT (JSON Web
Token) based authentication and its implementation with FastAPI and React.

Chapter 8, Server-Side Rendering and Image Processing with FastAPI and Next.js, provides an introduction
to the Next.js framework and its various page rendering methods as well as an image processing
pipeline based on Cloudinary and the Python Pillow module. Finally, it shows how an application
can be deployed on Vercel.

Chapter 9, Building a Data Visualization App with the FARM Stack, shows how to achieve various
functionalities that might be needed in a modern web application – sending emails, displaying charts
or dashboards based on data, creating reports, and more.

Chapter 10, Caching with Redis and Deployment on Ubuntu (DigitalOcean) and Netlify, provides an
in-depth guide to deployment of FastAPI on a Ubuntu server with Nginx on a popular platform and
the use of Netlify for the frontend.

Chapter 11, Useful Resources and Project Ideas, concludes with some useful tips and considerations
regarding the various stack components and provides some project ideas for further development.

To get the most out of this book xv

To get the most out of this book
You will need Python 3.6 or later installed on your computer, as well as Node.js 16 (or later). You should
also have the basic knowledge needed to install packages with pip (Python) and npm or yarn (Node.js).

For the deployment of the projects, you will need to create accounts on MongoDB, Heroku, Vercel,
Netlify, and Cloudinary (free). For the deployment on DigitalOcean, the cheapest solution is suggested
(at the time of writing, 5 USD per month). I have tried to use the cheapest and, where possible, free
tiers of the services so you can try before you find a solution that works well for you.

If you are using the digital version of this book, we advise you to type the code yourself or access
the code from the book’s GitHub repository (a link is available in the next section). Doing so will
help you avoid any potential errors related to the copying and pasting of code.

Download the example code files
You can download the example code files for this book from GitHub at https://github.com/
PacktPublishing/Full-Stack-FastAPI-React-and-MongoDB. If there’s an update
to the code, it will be updated in the GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at https://
github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots and diagrams used in this book.
You can download it here: https://packt.link/Qat1m.

https://github.com/PacktPublishing/Full-Stack-FastAPI-React-and-MongoDB
https://github.com/PacktPublishing/Full-Stack-FastAPI-React-and-MongoDB
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://packt.link/Qat1m

Prefacexvi

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names, filenames, file
extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: “Let’s
open our .env file and set up Cloudinary.”

A block of code is set as follows:

from fastapi import FastAPI

app = FastAPI()

@app.get("/")

async def root():

 return {"message": "Hello FastAPI"}

When we wish to draw your attention to a particular part of a code block, the relevant lines or items
are set in bold:

import shutil

from fastapi import FastAPI, Form, File, UploadFile

app = FastAPI()

Any command-line input or output is written as follows:

uvicorn chapter3_first_endpoint:app --reload

Bold: Indicates a new term, an important word, or words that you see onscreen. For instance, words
in menus or dialog boxes appear in bold. Here is an example: “You must explicitly set that on your
Cloudinary settings page, under the Uploads tab – Enable unsigned uploading.”

Tips or important notes
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at customercare@
packtpub.com and mention the book title in the subject of your message.

Share Your Thoughts xvii

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you have found a mistake in this book, we would be grateful if you would report this to us. Please
visit www.packtpub.com/support/errata and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would
be grateful if you would provide us with the location address or website name. Please contact us at
copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you
are interested in either writing or contributing to a book, please visit authors.packtpub.com.

Share Your Thoughts
Once you’ve read Full Stack FastAPI, React, and MongoDB, we’d love to hear your thoughts! Please
click here to go straight to the Amazon review page for this book and
share your feedback.

Your review is important to us and the tech community and will help us make sure we’re delivering
excellent quality content.

http://www.packtpub.com/support/errata
http://authors.packtpub.com
https://packt.link/r/1-803-23182-3

Part 1 – Introduction to
the FARM Stack and the

Components

In this part, we will cover the basics of MongoDB, FastAPI, and React, explore the difference between
other options, and learn how to start with each of the technologies covered.

This part includes the following chapters:

• Chapter 1, Web Development and the FARM Stack

• Chapter 2, Setting Up the Document Store with MongoDB

• Chapter 3, Getting Started with FastAPI

• Chapter 4, Setting Up a React Workflow

1
We b D e v e l o p m e n t a n d t h e

FA R M S t a c k

Websites are built using a set of technology that is often called a stack – every component of the stack
is responsible for one layer of the app. Although, in theory, you could combine any type of frontend
technology with any type of background technology and, thus, end up with a custom stack, some
have proven their worth in terms of agility and reduced development time, and they have strong
communities and companies backing them.

In this chapter, we will provide an overview of today’s web development landscape in terms of the
available technologies and demands, and we make the case for the FARM stack – a combination of
FastAPI for the REST API layer, React for the frontend, and MongoDB as the database.

If you are a web developer, an analyst who must put some data online from time to time, or if you just
want to broaden your developer’s horizon, this chapter should give you some perspective on this set
of tools, the choices that tend to it, and how it compares to alternative technologies.

I will try to give a broad overview of the high-level concepts of the technologies that constitute the
FARM stack, and I will discuss the ways that your next web development project might benefit from
using this set of tools. For now, we will not go into details or concrete examples, but rather compare
the selected stack components (MongoDB, FastAPI, and React) with their possible counterparts and
make the case for the FARM stack.

As someone who has begun their journey through web development in what is considered the early
days of yore, I remember Microsoft Frontpage and the possibility of turning Word documents into
web pages. I remember using tables for layouts, and I remember animated GIF banners popping up
everywhere. I also remember the excitement of putting a page online for the world to see.

Web Development and the FARM Stack4

Today, we have so many options for building websites and apps that it can become overwhelming to
navigate and try to figure out the tools that satisfy often contradictory criteria. Websites aren’t just
websites anymore – they are living creatures of the web that might evolve into, say, a mobile app or
a lightweight CRM solution. Rapid tools such as React Native enable us to reuse the same (backend)
code base and deliver a pretty good mobile app with almost all the native app features. Maybe the web
app will need to provide some type of analytics that involves some heavy math – statistical analysis (a
Spanish political party made great use of a simple statistical mobile app a couple of years ago and made
a real impact by enabling its members to participate more directly in the decision-making process at
all levels) or a simple recommendation algorithm. Maybe we want to add some fancy interactive charts
and graphs displaying the many advanced metrics of our favorite NBA player’s statistics?

In this chapter, we will cover the following topics:

• What is the FARM stack and how does it fit together?

• Why use MongoDB for data storage?

• What is FastAPI?

• The frontend with React

By the end of this chapter, you will have a good understanding of the benefits that individual FARM
stack components bring to a development project, how they relate to each other, and why this particular
set of technologies might be a great fit for web apps that have fluid specifications – both in terms of
the data handled and desired functionalities.

What is the FARM stack and how does it fit together?
It is important to understand that stacks aren’t really special – they are just sets of technologies that
cover different parts of a modern web app, blend well together, and enable us to satisfy certain criteria
while building web apps. To have a functional web application or site, we need to have a system
consisting of the following:

• An operating system: Usually, this is Unix/Linux-based.

• A database layer: A SQL or NoSQL solution. In our case, we will use MongoDB.

• A web server: Apache and Nginx are quite popular, but we will talk about Python solutions
for FastAPI, such as Uvicorn or Hypercorn.

• A development environment: PHP, Node.js/JavaScript, .NET, or Python.

Optionally, and more often than not, we could also add a frontend library or framework (such as Vue.js,
Angular, React, or Svelte) since the vast majority of web development companies benefit from adopting
one in terms of consistency, development speed, and standards compliance. And let’s face it – it is
2022, and you just cannot afford to handcraft your user interfaces without a library or a framework.

What is the FARM stack and how does it fit together? 5

Let’s list the most famous stacks or, at the very least, some of those that have a popular acronym:

• MERN: MongoDB + Express.js + React + Node.js is still probably one of the most popular ones
today. Developers can be comfortable and never leave JavaScript, except when they need to
write some style sheets. With the addition of React Native for mobile apps and something like
Electron.js for desktop apps, a product can encompass virtually every platform while relying
solely on JavaScript.

• MEAN: MongoDB + Express.js + Angular.js + Node.js is similar to the previously mentioned
MERN, with Angular.js managing the frontend in a more structured Model–View–Controller
(MVC) way.

• PERN: Postgres + Express.js + React + Node.js is for those who want the stability and features of
a Postgres relational database. Often, it is used in conjunction with an object-relational mapper.

• LAMP: Linux + Apache + MySQL + PHP is probably the first acronym to gain popularity and
one of the most perused in the past 20 years.

The first three stacks run on the Node.js platform (a server-run JavaScript V8 engine) and have a web
framework in common – although Express.js is the most popular, there are excellent alternatives in
the Node.js universe, such as Koa.js, Fastify.js, or some more structured ones such as Nest.js.

One popular, and very interesting, Python-based combination is using the Django web framework
and the excellent Django REST Framework (DRF), which is a toolkit for building REST APIs in
a modern and logical way. Django itself is very mature and popular among Python developers and
offers flexibility and development speed along with some typical Django goodies: an admin site, the
possibility of customizing and serializing REST responses, the option to choose between functional
and class-based views, and more.

The choice of the stack should be heavily conditioned by the type and the scope of the project at
hand. Startups, but also small internal tools, can often benefit from agile, rapid development with
flexibility and potential scalability down the road. Additionally, time-to-market, the availability of
developers (the talent pool), and the maintainability and support of individual layers play a key role
in the process of stack selection.

FARM is a new acronym, and there aren’t many resources covering it as a whole, though there are
excellent resources on MongoDB and React, which have a great degree of adoption and maturity. On
the other hand, FastAPI is much newer but provides excellent online documentation.

Let’s dissect this funny acronym. FA stands for FastAPI – a very interesting and, in technology years,
brand-new Python web framework. R stands for React, which is, arguably, the most popular UI library,
while M denotes the data layer – MongoDB, which is, arguably, the most popular NoSQL database
available today. I honestly don’t know if the acronym started as a joke, but it sure sounds great.

Web Development and the FARM Stack6

The main objective of this chapter is to get you acquainted with the included technologies at a high
level and compare them with the alternatives. We will try to set the ground for a simple project that
we will be building throughout the book – a used automobile sales website – and then add some
functionality while trying to implement some of the best practices in all of the areas. At the end of the
chapter, you should hopefully become interested (maybe even excited!) in the proposed technology
mix and be able to evaluate whether this type of setup could benefit your future projects and whether
it is something useful to add to your web developer’s toolkit.

The following diagram provides a high-level overview of the moving parts involved in the FARM stack:

Figure 1.1 – A Diagram of the FARM stack with its components

As you can see from the preceding diagram, the FARM stack is composed of three layers. The user
performs an action using the client, which, in our case, will be based on React – this ultimately creates
a bundle of HTML, CSS, and JavaScript. This user action (a mouse click, a form submit, or some
other event) then triggers an HTTP request (such as GET, POST, PUT, or another HTTP verb with
a payload) that gets processed by our REST API service (FastAPI).

The Python part is centered around FastAPI and optional dependencies and is served by uvicorn – a
fast Python-based server. The backend is responsible for dispatching the appropriate database calls
to MongoDB using various commands - queries (such as findOne, find, create, update,
and more) and leveraging the MongoDB aggregation framework. The results obtained from the
database are interpreted by FastAPI through the Python driver of choice (Motor), converted from
BSON into appropriate Python data structures, and finally, output from the REST API server in the
form of plain JSON.

Since we will use Motor, which is an asynchronous Python driver for MongoDB, these calls will be
handled asynchronously. Finally, returning to the diagram and the arrow denoted by JSON, the data
is fed to the UI where it is handled by React and used to update the interface, render the necessary
components, and synchronize the UI with React’s virtual DOM tree.

What is the FARM stack and how does it fit together? 7

In the following sections, we will go over the motivations behind the birth of the FARM stack.
Additionally, we will go over each component and the features that make it a good fit in more detail.
After a brief introduction to the benefits of the stack as a whole, I will provide a high overview of
each choice and underline the benefits that it can provide to a modern web development workflow.

Why the FARM stack?

I truly believe that the flexibility and simplicity of the stack, along with the components comprising
it, could give you a real boost in terms of development speed, extensibility, and maintainability while
allowing for scalability (due to the distributed nature of MongoDB on the one hand and the async nature
of FastAPI on the other hand) down the road, which might prove crucial should your product need to
evolve and become bigger than it was initially supposed to be. The ideal scenario would probably be a
small-to-medium-scale web app that you could play with and find the time to experiment with a bit.
Finally, I believe that developers and analysts alike could greatly benefit from Python’s ecosystem and
extensibility through a rich ecosystem of modules that encompasses virtually every human activity
that includes some type of computing.

Evolution in Web Development

The beginning of the 2020s saw an interesting blurring of the borders between classical web development
and other types of computing. Data science has lost some of its mystique, much of the science of it
has been turned into a craft, and it has descended into the plebs and the not-so-scientifically inclined
developers. Now, algorithms such as linear regressions, clustering, even neural networks, and ensemble
methods are very easy to embed even in the most mundane systems in order to gain a feature, to achieve
a slight performance gain, or add a simple recommendation engine. The visualization toolbox has
moved online and classical workhorses such as Ggplot2 (for R) and D3.js, which require a thorough
understanding of the underlying technologies, are now being given a run for their money by various
combinations of D3.js and Svelte or React, SVG or Canvas - based solutions and more; for example,
full-blown Python and React web application frameworks specialized for data visualization such as
Plotly - Dash, Streamlit, or simple yet powerful solutions such as Chart.js.

Alternatively, if you just need to create a company or portfolio website with structured content, you can
choose from the plethora of popular JAMstack solutions. JAMstack is a relatively new web development
paradigm based on not-so-new components – JavaScript, API(s), and Markup (JAM) – and enables
developers to develop faster web solutions, achieving blazing performance and a non-techie-friendly
admin interface.

Additionally, web hosting costs have rapidly decreased in the last decade and several cloud-based
companies have drastically lowered the technical barrier to web development and the creation of
internet-based products. In this book we will examine many cloud-based systems that can handle
parts of the system well.

Having provided a brief introduction to the contemporary and novel challenges of modern web
development, it is time to introduce our database system of choice – MongoDB.

Web Development and the FARM Stack8

Why use MongoDB?
In the following paragraphs, we will go through the main features of our selected database system –
MongoDB – and give a high-level overview of the features that make it an excellent fit for our FARM
stack. After a brief introduction of some specificities of the database, in the following chapter, we will
go over the setup and create a working database environment that will enable us to showcase some
basic methods.

MongoDB is the database of choice in the FARM stack. It is a fast, scalable, and document-oriented
database that enables flexible schemas and, thus, iterative and rapid development. MongoDB is able
to accommodate data structures of varying complexities, and its querying and aggregation methods
make it an excellent choice for a flexible REST API framework such as FastAPI, coupled with an official
Python driver. It has a high level of adoption and maturity and is one of the pillars of the NoSQL data
storage movement that took the web development world by storm a decade ago.

The main features that make MongoDB an ideal candidate for a flexible and fast-paced development
environment, prototyping, and iterative development are listed as follows:

• Easy and cheap: It is easy and fast to set up using an online cloud service that offers a generous
free tier, while local installation is always an option.

• Flexibility: The NoSQL nature of the database enables extremely flexible models and fast
iterations and modifications on the fly.

• Web-friendly format: The native data format – BSON – is practically a binary version of
JSON, which, in turn, is the de facto data format of the modern web, so no complex parsing
or transformations are necessary.

• Complex nested structures: MongoDB documents allow other documents and arrays of
documents to be embedded, which naturally translates into the data flow of a modern data
web app (for example, we can embed all of the comments into the blog post they refer to).
Denormalization is encouraged.

• Simple intuitive syntax: The methods for performing basic CRUD operations (that is, create,
read, update, and delete), coupled with powerful aggregation frameworks and projections,
allow us to achieve mostly all data reads relatively simply through the use of drivers, and the
commands should be intuitive for anyone with a bit of SQL experience.

• Built with scalability in mind: MongoDB is built from the ground up with several objectives
– scalability, speed, and the ability to handle huge (huMONGOus) amounts of data.

• Community and documentation: Lastly, MongoDB is backed by a mature company and a strong
community, and it offers various tools to facilitate the development and prototyping process.
For instance, Compass is a desktop application that enables users to manage and administer
databases. The framework of the serverless functions is constantly being updated and upgraded,
and there are excellent drivers for virtually every programming language.

Introducing FastAPI 9

I believe that in some cases – and this includes a lot of cases – MongoDB should be your first choice,
especially when you are designing something that still has a very fluid or vague specification, and let’s
be honest, that happens a lot more than we would like to admit.

Of course, MongoDB is not a silver bullet, and some drawbacks are worth noticing upfront. On the one
hand, the schemaless design and the ability to insert any type of data into your database might be a bit
panic-inducing but translates to the need for stronger data integrity validation on the backend side.
We will see how Pydantic – an excellent Python validation and type-enforcement library – can help us
with that. The absence of complex joins, which are present in the SQL world, might be a dealbreaker
for some types of applications. For analytics-intensive applications that require numerous complex
queries, relational databases are a better, and often the only possible, solution. Finally, for mission-
critical applications that require adherence to the ACID principles (that is, atomicity, consistency,
isolation, and durability) of transactions, MongoDB or any NoSQL database system might not be
the right solution.

Now that we understand what MongoDB brings to the table in terms of scalability, but especially
flexibility with its schema-less approach, let us take a look at the REST API framework of choice,
FastAPI, and learn how it can help us leverage that schema-less approach and simplify our interactions
with the data.

Introducing FastAPI
Now we will look at a brief introduction to the Python REST-API framework of choice – FastAPI.
Additionally, we will go over a high-level overview of the features that make it a protagonist in our
FARM stack. I will try to compare FastAPI with Python and JavaScript alternatives and explain why
it can be a great fit for a modern and flexible stack.

REST APIs

What is an API? Technically, API stands for Application Programming Interface. APIs are used to
enable some kind of interaction between different pieces of software and different systems, and they
communicate using HTTP (short for Hypertext Transfer Protocol) through a cycle of requests and
responses. In the last couple of decades, APIs have become the standard protocol for communication
between various servers and heterogeneous clients, and they can be seen as a sort of vascular system
that is fundamental to information exchange on the web.

There are many definitions, more or less formal ones, and application programming interfaces can
mean many things, but I like to view them as wirings that expose the business logic through a uniform
interface, allowing us to use them from another realm.

Web Development and the FARM Stack10

An API is, as its name suggests, an interface. It is a way for a human or a machine to interact with an
application or a service through an interface. Every API provider will provide an interface that is well-
suited for the type of data that they provide, for instance, a weather forecasting station will provide an
API that lists the temperatures and humidity levels for a certain period and a certain location. Some
sports sites will provide statistical data about the games that are being played and a pizza delivery
API will provide you with the selected ingredients, the price, and the estimated time of arrival. APIs
are everywhere – inside your TV, your wallet, and, heck, your favorite news site probably uses at least
a dozen of them. With the adoption of the Internet of Things, APIs will enter even more aspects of
our lives, transmitting biometric and medical data, enabling fast communications between factory
machines, tractors in the fields, traffic frequencies, traffic light control systems, and more. APIs are
what makes today’s web turn, what generates traffic, and ultimately, what generates revenue. Put simply,
we can think of an API as a standardized way of information exchange, with usability, performance,
and scalability in mind.

We will not go over the rigorous definitions of REST APIs, but just list some of the most important ones:

• Statelessness: REST APIs are said to be stateless, which means that neither the client nor the
server stores any states in-between. All the requests and responses are handled by the API
server in isolation and without information about the session itself.

• Layered structure: In order to keep the API scalable and understandable, a RESTful architecture
implies a layered structure. The different layers form a hierarchy and communicate with each
other but not with every component, thus improving overall security.

• Client-server architecture: APIs should be able to connect different systems/pieces of software
without limiting their own functionalities – the server (the system that provides the response)
and the client (the system making the request) have to stay separate and independent from
each other.

We will be using FastAPI for our REST API layer, and we could say that it checks all the required
boxes and then some more.

What is FastAPI?

FastAPI is a modern and performant web framework for building APIs. Built by Sebastian Ramirez,
it uses, to best avail, the newest features of the Python programming language, such as type hinting
and annotations, the async – await syntax, Pydantic models, web socket support, and more.

There are numerous reasons why FastAPI, though relatively new, will probably see a wider spread in
the web development world in the future, so let’s list some of them:

• High performance: FastAPI is able to achieve very high performance, especially compared
to other Python-based solutions. By using Starlette under the hood, FastAPI’s performance
reaches levels that are usually reserved for Node.js and Go.

Introducing FastAPI 11

• Data validation and simplicity: Being heavily based on Python types and Pydantic brings
numerous benefits. Since Pydantic structures are just instances of classes the developers define,
we can perform complex data validations, deeply nested JSON objects, and hierarchical models
(using Python lists and dictionaries), and this relates very well with the nature of MongoDB.

• Faster development: Development becomes more intuitive, with strong integrated development
environment (IDE) support, which leads to faster development time and fewer bugs.

• Standards compliance: FastAPI is standard-based and fully compatible with open standards
for building APIs – OpenAPI and JSON schemas.

• Logical structuring of apps: The framework allows for structuring of APIs and apps into
multiple routers and allows granular request and response customization. and easy access to
every part of the HTTP cycle.

• Async support: FastAPI uses an Asynchronous Server Gateway Interface (ASGI) and, with
the use of an ASGI-compatible server, such as Uvicorn or Hypercorn, is able to provide a truly
asynchronous workflow without actually having to import the Async.io module into Python.

• Dependency injection: The dependency injection system in FastAPI is one of its biggest selling
points. It enables us to create complex functionalities that are easily reusable across our API. This
is a pretty big deal and probably the feature that makes FastAPI ideal for hybrid web apps – it
gives developers the opportunity to easily attach different functionalities to the REST endpoints.

• Great documentation: The documentation of the framework itself is excellent and second to
none. It is both easy to follow and extensive.

• Automatic documentation: Being based on OpenAPI, FastAPI enables automatic documentation
creation, which essentially means that we get our API documented for free with Swagger.

In order to get at least a basic idea of what coding with FastAPI looks like, let’s take a look at a
minimal API:

main.py

from fastapi import FastAPI

app = FastAPI()

@app.get("/")

async def root():

 return {"message": "Hello World"}

The preceding few lines of code define a minimal API with a single endpoint (/) that responds to a
GET request with the message “Hello world”. We instantiate a FastAPI class and use decorators
to tell the server which HTTP methods should trigger which function for a response, just like with
the Flask microframework, for example.

Web Development and the FARM Stack12

Python and REST APIs

Python has been used to build REST APIs for a very long time. While there are many options and
solutions, DRF and Flask seem to be the most popular ones, at least until recently. If you are feeling
adventurous, you can Google less popular or older frameworks such as bottle.py and CherryPy. DRF
is a plug-in system for the Django web framework and enables a Django system to create highly
customized REST API responses and generate endpoints based on the defined models. DRF is a very
mature and battle-tested system. It is regularly updated, and its documentation is very detailed. Flask,
Python’s lightweight microframework, is a real gem among the web-building Python tools and can
create REST APIs in a lot of different ways. You can use pure Flask and just output the appropriate
format (i.e., JSON instead of HTML) or use some of the extensions developed to make the creation
of REST APIs as straightforward as possible. Both of these solutions are fundamentally synchronous,
although there seems to be active development in the direction of enabling async support.

There are also some very robust and mature tools, such as Tornado, which is an asynchronous networking
library (and a server) that is able to scale to tens of thousands of open connections. Finally, in the last
couple of years, several new Python-based solutions have been created.

One of these solutions, and arguably the fastest, is Starlette. Dubbed as a lightweight ASGI framework/
toolkit, it is ideal for building high-performance async services.

Like Flask was built on top of a couple of solid Python libraries – Werkzeug and Jinja2 – 10 or
more years ago, Sebastian Ramirez built FastAPI on top of Starlette and Pydantic, while also adding
numerous features and goodies by using the latest Python features, such as type hinting and async
support. According to some recent surveys, FastAPI is quickly becoming one of the most popular
and most loved web frameworks.. Undeniably, it is gaining in popularity, and it looks like it is here to
stay, at least for the foreseeable future.

In Chapter 3, Getting Started with FastAPI, of this book, we will go over the most important features of
FastAPI, but at this point, I just want to stress the significance of having a truly async Python framework
as the glue for the most diverse components of a system. In fact, besides doing the usual web framework
stuff, such as communicating with a database or, in our case, a MongoDB store, spitting out data to a
frontend, and managing authentication and authorization, this Python pipeline enables us to quickly
integrate and easily achieve frequently required tasks such as background jobs, header and body
manipulation, response and request validation, and more through the dependency injection system.

We will try to cover the absolute minimum necessary for you to be able to build a simple FastAPI
system. I will make frequent trips to the official documentation site and try to find the simplest solutions.
Lastly, we will consider various web server solutions and deployment options (such as Deta, Heroku,
and Digitalocean) for our FastAPI Python-based backend, while trying to opt for free solutions.

So, to cut a long story short, we choose FastAPI because we ideally want the ability and speed to
handle requests asynchronously as if we were using a Node.js server while having access to the
Python ecosystem. Additionally, we want the simplicity and development speed of a framework that
automatically generates documentation for us.

The frontend – React 13

After reviewing the backend components, it is time to finalize our stack and put a face on it. We
will now look at a minimal introduction to React and discuss what distinguishes it from other (also
valid) solutions.

The frontend – React
Let’s start with a bit of context here. Perhaps the changes in the world of the web are most visible when
we talk about the frontend – the part of the website that is facing the users. Tim Berners-Lee made
the first HTML specification public in 1991, and it consisted of text and under 20 tags. In 1994, we
got cascading style sheets and the web started looking a little nicer. Legend has it that a new browser
scripting language called Mocha was created in just 10 days – that was in 1995. Later, this language
went through numerous changes and became what we know today as JavaScript – a powerful and fast
language that, with the advent of Node.js, was able to conquer the servers, too.

Another important concept that has left a strong mark in the development of the frontend is the
extensive use of Asynchronous JavaScript and XML (AJAX) – you might remember all those
rounded corner web apps with vowel-based URLs. The technology of making asynchronous HTTP
requests was known well before the arrival of Web 2.0 but was mostly underutilized. Libraries such
as jQuery, but also Scriptaculous, MooTools, and more, began using AJAX and offering desktop-like
interactivities in the browser.

One problem that quickly arose was the handling of data across shared views. Backbone, Knockout,
and Ember were the most popular libraries that mitigated to solve that problem. In 2010, AngularJS
came to light; this was a complex Model View Controller (MVC)-based framework with a very
specific and prescribed way of doing things.

In May 2013, React was presented in the US and the web development world was able to witness
numerous innovations – virtual DOM, one-way data flow, the Flux pattern, and more.

This is a bit of history to just try and provide some context and continuity because web development,
like any other creative human activity, rarely moves in quantum leaps. Usually, it moves in steps that
enable users to resolve the issues that they are facing in an, often, suboptimal way. It would be unfair
not to mention Vue.js, which is an excellent choice for building frontends that also sports an entire
ecosystem of libraries, and Svelte.js, which offers a radical shift in building UIs in the sense that the
UI is compiled and the bundled size is significantly smaller.

Why use React?

As of 2022, interactive, attractive, fast, and intuitive UIs are a necessity for any public-facing web
application. It is possible, though very difficult, to achieve most or every functionality that even a
simple web is expected to provide using just plain JavaScript. FastAPI is more than capable of serving
HTML (and static files, such as JavaScript or CSS) using any compatible templating engine (the most
widely used in the Python world is probably Jinja2), but we and the users want more:

Web Development and the FARM Stack14

Figure 1.2 – The FARM stack

First of all, we want a streamlined and structured way of building UIs. React enables the developers
to create dynamic applications in a much easier way by relying on JSX – a mix of JavaScript and XML
that has an intuitive tag-based syntax and provides developers with a way to think of the application in
terms of components that go on to form other, more complex, components, thus breaking the process
of crafting complex user interfaces and interactions into smaller, more manageable steps.

The main benefits of using React as a frontend solution can be summarized as follows:

• Performance: By using the React virtual DOM, which operates in memory, React apps provide
smooth and fast performance.

• Reusability: Since the app is built by using components that have their own properties and
logic, we can write out components once and then reuse them as many times as needed, cutting
down development time and complexity.

• Ease of use: This is always a bit subjective, but React is easy to get started. Advanced concepts
and patterns require some level of proficiency, but even novice developers can reap immediate
benefits just from the possibility of splitting the application frontend into components and then
using them like LEGO bricks.

The frontend – React 15

• SPAs or SSR: React and frameworks based on React empower us, the developers, to create
Single-Page Applications that have a desktop-like look and feel but also server-side rendering
that is beneficial for search engine optimization.

• React-based frameworks: Knowing our way around React enables us to benefit from some of
today’s most powerful frontend web frameworks such as Next.js, static site generators (such as
Gatsby.js), or exciting and promising newcomers (such as React Remix).

• Hooks system: In version 16.8, the React library introduced hooks that enable the developers
to use and manipulate the state of the components, along with some other features of React
without the need to use classes. This is a big change that tackles (successfully) different issues:
it enables the reusability of stateful logic between components and simplifies the understanding
and management of complex components.

The simplest React hook is probably the useState hook – it enables us to have and
maintain a stateful value (such as an object, array, or variable) throughout the life cycle of
the component, without having to resort to old-school class-based components.

For instance, a very simple component that could be used for filtering search results
when a user is trying to find the right car might contain the desired brand, model, and
some production year range. This functionality would be a great candidate for a separate
component – a search component that would need to maintain the state of different input
controls – probably implemented as a series of dropdowns. Let’s just see the simplest
possible version of this implementation. We will create a simple functional component with
a single stateful string value – an HTML select element that will update the stateful variable
named brand:

import { useState } from "react";

const Search = () => {

 const [brand, setBrand] = useState("");

 return (

 <div>

 <div>Selected brand: {brand}</div>

 <select onChange={(ev) =>

 setBrand(ev.target.value)}>

 <option value="">All brands</option>

 <option value="Fiat">Fiat</option>

 <option value="Ford">Ford</option>

 <option value="Renault">Renault</option>

 <option value="Opel">Opel</option>

 </select>

Web Development and the FARM Stack16

 </div>

);

};

export default Search;

The bold line is where the hook magic happens, and it must be within the body of a
function. The statement simply creates a new state variable, called brand, and provides us a
setter function that can be used inside the component to set the desired value.

There are many hooks that solve different problems, and in this book, we will go over
the fundamental ones. In this example, the state variable brand is available inside the
component, and it could be tied to a query string that would enable the API to only return
the results that conform to the filter defined by the state variable.

• Declarative views: In React, we do not have to worry about transitions or mutations of the
DOM. React handles everything, and the only thing the developer has to do is to declare how
the view looks and reacts.

• No templating language: React practically used JavaScript as a templating language (through
JSX), so all you have to know in order to be able to use it effectively is some JavaScript, such
as array manipulation and iteration.

• Rich ecosystem: There are numerous excellent libraries that complement React’s basic
functionality – from routers to custom hooks, external library integrations, CSS framework
adaptations, and more.

In this book, we will not dive deep into React. Why not? Well, I believe that the UI is as important as
any other part of the app – if your app is not user-friendly or downright ugly, nobody will want to have
anything to do with it, no matter how much value it brings. However, that is not the emphasis of this
book. The idea is just to get the ball rolling and see how all the different parts connect and fit within
the bigger picture. So, we will keep the frontend part to a minimum. Another reason to choose React is
because of its great community, so you are bound to have to deal with it someday if you haven’t already,
and to be quite honest, with the addition of React Hooks, at least for me, it has become very pleasant to
work with. Hooks provide React with a new way of adding and sharing stateful logic across components
and can even replace (in simpler cases) the need for Redux or other external state management libraries.
We will make use of the Context API – a React feature that enables us to pass objects and functions down
the component tree without the need of passing props through components that do not need it. Coupled
with a hook – the useContext hook – it provides a straightforward way of passing and maintaining
stateful values in every part of the app. Just being able to create declarative reusable components and
parametrize them into functions was what got me interested – treating visual and UI components like
functions with a state if you will. Compared to other frameworks, React is small. It isn’t even considered
a framework but a library – actually, a couple of libraries. Still, it is a mature product with over 10 years
of development behind it, created for the needs of Facebook, and the biggest internet companies such
as Uber, Twitter, and Airbnb use and rely upon it.

Summary 17

Like FastAPI, which is based on the newest and coolest Python features and, thus, makes maximum
use of what the language has to offer, React uses (although it is not imperative) the newest features of
functional JavaScript, ES6, and ES7, particularly when it comes to arrays. As someone said, working
with React improves our understanding of JavaScript, and a similar thing could be said of FastAPI
and modern Python.

The final piece of the puzzle will be the choice of a CSS library or framework. In 2022, there are dozens
of CSS libraries that play nice with React, ranging from Bootstrap, Material UI, Bulma, and more.
Many of these libraries merge with React to become meaningful frameworks of prebuilt customizable
and parametrized components. We will use Tailwind CSS as it is simple to set up – all the cool kids
are using it, and it is intuitive once you get the hang of it, but more on that later.

Keeping the React part to a bare minimum should allow you, the reader, to focus more on the true
protagonists of the story – FastAPI and MongoDB and their dance – and easily replace the React part,
should you wish to do so, with anything else that rocks your boat, be it Svelte.js, Vue.js, or vanilla
handcrafted ECMAScript.

However, you should know that by embracing or, at the very least, learning the basics of React (and
Hooks), you are embarking on a wonderful web development adventure that will enable you to use
and understand many tools and frameworks built on top of React.

Arguably, Next.js is the feature-richest server-side rendering React framework that enables fast
development, filesystem-based routing, and more. Gatsby, a React-based static site generator, is a great
tool for crafting blazingly fast sites and, coupled with a headless CMS, enables us to create simple and
streamlined workflows suited for non-technical staff. React-Remix seems to be an interesting project,
with a lot of the new React features baked in. Lastly, learning one major frontend framework, be it
React, Svelte, or Vue, enables you to switch to another much easier one – the problems they are trying
to solve are pretty much the same, and the solutions and underlying philosophies have many things
in common even if the implementations might differ drastically.

Summary
In this chapter, we laid the background for the FARM stack, from describing the role of each component
to their strengths. Hopefully, I have managed to get you interested in exploring the FARM stack. Now
you understand how to make a conscious and informed decision and adopt the FARM stack for your
next project, and you can justify your choice within the context of a flexible and fluid web development
project specification. In the next chapter, we will provide a fast-paced, concise, and actionable overview
of MongoDB and its querying and aggregation functionalities, with emphasis on the Python ecosystem.

2
S e t t i n g U p t h e D o c u m e n t

S t o r e w i t h M o n g o D B

In this chapter, we are going to address some of the main features of MongoDB, building upon what
was mentioned in the introductory chapter, and then we will dive into a practical introduction
through several simple yet illustrative examples. After reviewing the process of installation on a local
machine, using Windows or Ubuntu (which is probably the most popular Linux distribution today),
and creating an online account on Atlas, we will be covering the basic commands of the MongoDB
querying framework that enable us to start as quickly as possible. We will walk you through the essential
commands (methods) that will enable you to insert, manage, query, update, and wrangle your data.
The aim of this chapter is not to make you a MongoDB expert or even a proficient user, but just to
help you see how easy it can be to set up a system—be it on your local machine or on the cloud—and
perform the operations that might arise in a fast-paced web development process.

In this chapter, we will cover the following topics:

• The structure of a MongoDB database

• Installing MongoDB and friends

• MongoDB querying and CRUD operations

• Aggregation framework

By the end of this chapter, you will be able to set up a MongoDB database in a local or online
environment, and you will know the basics of data modeling with the most popular NoSQL database.
Topics such as querying (through MongoDB methods and aggregation) are best learned through
playing around with data. In this chapter, we have provided a simple yet interesting real-life dataset
that will be your starting point. Finally, this chapter should enable you to import your own data and
apply the principles from the following pages, building upon them and coming up with your own
queries, aggregations, and data insights.

Setting Up the Document Store with MongoDB20

Technical requirements
MongoDB’s latest version (version 5) requires Windows 10 64-bit or Windows Server 2019 or later.
When it comes to Linux, the last three versions of Ubuntu (Debian) are supported. Any decent PC or
laptop with at least 8 GB of RAM and a CPU not more than 5 years old should be more than enough
to get you started. However, for full-stack development—which means having a couple of processes
running simultaneously, compiling the frontend, maybe some CSS processor, having an editor (we
will use VS Code), and a browser with a dozen tabs open—if possible, we would recommend 16 GB
of RAM and a big screen (protect your eyes because unfortunately, they are not upgradeable!).

The supporting files for this chapter can be found at the following link: https://github.com/
PacktPublishing/Modern-Web-Development-with-the-FARM-Stack.

The structure of a MongoDB database
MongoDB is arguably the most used NoSQL database today – its power, ease of use, and versatility
make it an excellent choice for large and small projects; its scalability and performance enable us to
be certain that at least the data layer of our app has a very solid foundation.

In the following sections, we will take a deeper dive into the basic units of MongoDB: the document,
the collection, and the database. Since this book is taking a bottom-up approach, we would like to start
from the very bottom and present an overview of the simplest data structures available in MongoDB
and then take it up from there into documents, collections, and so on.

Documents

We have repeated numerous times that MongoDB is a document-oriented database, so let’s take a
look at what that actually means. If you are familiar with relational database tables (with columns
and rows), you know that one unit of information is contained in a row, and we might say that the
columns describe that data.

In MongoDB, we can make a rough analogy with the relational database row, but, since we do not
have to adhere to a fixed set of columns, the model is much more flexible. In fact, it is as flexible as
you want it to be, but you might not want to take things too far in that direction if you want to achieve
some real functionality. This flexible document really is just an ordered set of keys and corresponding
values. This structure, as we will explore later, corresponds with data structures in every programming
language; in Python, we will see that this structure is a dictionary and lends itself perfectly to the flow
of data of a web app or a desktop application.

https://github.com/PacktPublishing/Modern-Web-Development-with-the-FARM-Stack
https://github.com/PacktPublishing/Modern-Web-Development-with-the-FARM-Stack

The structure of a MongoDB database 21

The rules for creating documents are pretty simple: the key must be a string, a UTF-8 character with
a few exceptions, and the document cannot contain multiple keys. We also have to keep in mind
that MongoDB is case sensitive. Let’s take a look at the following relatively simple valid MongoDB
document, similar to the ones that we will be using throughout the chapter:

{

 {"_id":{"$oid":"62231e0a286b06fd01be579e"},

 "brand":"Hyundai",

 "make":"ix35",

 "year":2012,

 "price":9000,

 "km":143500

}

Apart from the first field, denoted by _id, which is the unique ID of the document, all of the other
fields correspond to simple JavaScript Object Notation (JSON) fields—brand and make are strings
(Hyundai, i35), whereas year, price and km (denoting the year of production, the price of the
vehicle in euros, and the numbers of kilometers on the meter) are numbers (integers, to be precise).

So, what data types can we use in our documents? One of the first important decisions when designing
any type of application is the choice of data types—we really do not want to use the wrong tools for
the job at hand. Let’s look at the most important data types in the following sections.

Strings

Strings are probably the most basic and universal data type in MongoDB, and they are used to represent
all text fields in a document. Bear in mind that text fields do not have to represent only strictly textual
values; in our case, in the application that we will be building, most text fields will, in fact, denote a
categorical variable, such as the brand of the car or the fact that the car has a manual or automatic
transmission. This fact will come in handy if you are designing a data science application that has
categorical or ordinal variables. As in JSON, text fields are wrapped in quotes. JSON files follow a
dictionary-like structure with a string, numbers, arrays, and Booleans of key-value pairs. An example
of a string variable called name encoded in JSON would be the following:

"name":"Marko"

Text fields can be indexed in order to speed up searching and they are searchable with standard regular
expressions, which makes them a powerful tool able to process even massive amounts of text.

Setting Up the Document Store with MongoDB22

Numbers

MongoDB supports different types of numbers:

• int: 32-bit signed integers

• decimal: 128-bit floating point

• long: 64-bit unsigned integer

• double: 64-bit floating point

Every MongoDB driver takes care of transforming data types according to the programming language
that is used to interface, so we shouldn’t worry about conversions except in particular cases that will
not be covered here.

Booleans

This is the standard Boolean true or false value; they are written without quotes since we do not want
them to be interpreted as strings.

Objects or embedded documents

This is where the magic happens. Object fields in MongoDB represent nested or embedded documents
and their values are other valid JSON documents. These embedded documents can have other
embedded documents inside, and this seemingly simple capability allows for complex data modeling.
An example would be if we wanted to embed the salesman responsible for a particular car, added in
bold in the following example:

{

 {"_id":{"$oid":"62231e0a286b06fd01be579e"},

 "brand":"Hyundai",

 "make":"ix35",

 "year":2012,

 "price":9000,

 "km":143500,

 "salesman":{

 "name":"Marko",

 {"_id":{"$oid":"62231e0a286b87fd01be579e"},

 "active":true

 }

}

The structure of a MongoDB database 23

Arrays

Arrays can contain zero or more values in a list-like structure. The elements of the array can be any
MongoDB data type including other documents. They are zero-based and particularly suited for
making embedded relationships – we could, for instance, store all of the post comments inside
the blog post document itself, along with a timestamp and the user that made the comment. In our
example, a document representing a car could contain a list of salesmen responsible for that vehicle,
a list of customer requests for additional information regarding the car, and so on. Arrays can benefit
from the standard JavaScript array methods for fast editing, pushing, and others.

ObjectIds

Every document in MongoDB has a unique 12-byte ID that is used to identify it, even across different
machines, and serves as a primary key. This field is autogenerated by MongoDB every time we
insert a new document, but it can also be provided manually – something that we will not do. These
ObjectIds are extensively used as keys for traditional relationships – for instance, every salesperson
in our application could have a list of ObjectIds, each corresponding to a car that the person is trying
to sell. ObjectIds are automatically indexed.

Dates

Though JSON does not support date types and stores them as plain strings, MongoDB’s BSON format
supports date types explicitly. They represent the 64-bit number of milliseconds since the Unix epoch
(January 1, 1970). All dates are stored in UTC and have no time zone associated.

Binary data

Binary data fields can store arbitrary binary data and are the only way to save non-UTF-8 strings to a
database. These fields can be used in conjunction with MongoDB’s GridFS filesystem to store images,
for example. Although, there are better and more cost-effective solutions for that, as we will see.

Other data types worth mentioning are null – which can represent a null value or a nonexistent field,
and we can store even JavaScript functions.

When it comes to nesting documents within documents, MongoDB supports 100 levels of nesting,
which is a limit you really shouldn’t be testing in your designs, at least in the beginning.

Documents in MongoDB are the basic unit of data and as such, they should be modeled carefully when
trying to use the database-specific nature to our advantage. Documents should be as self-contained
as possible and MongoDB, in fact, encourages a good amount of data denormalization. As MongoDB
was built with the purpose of providing developers with a flexible data structure that should be able
to fit the processes of data flow in a web application as easily as possible, you should think in terms
of objects and not tables, rows, and columns.

Setting Up the Document Store with MongoDB24

If a certain page needs to perform several different queries in order to get all the data needed for the
page and then perform some combine operation, your application is bound to slow down. On the
other hand, if your page greedily returns a bunch of data in a single query and the code then needs
to go over this result set in order to filter the data that is actually needed, memory consumption will
likely rise, and this can lead to a potential problem and slow operations. So, like almost everywhere,
there is a sweet spot; a locally optimal solution, if you will.

In this book, we will be using a simple example with automobiles for sale and the documents representing
the unit (a car, really) are going to be rather straightforward.

We can think of a scenario where users can post comments or reviews on these cars and the SQL-ish
way to do it would be to create a many-to-many relationship; a car can have multiple user comments
and a user can leave comments or ratings on multiple cars. To retrieve all of the comments for a
particular car, we would then have to perform a join by using that car’s primary key, entering the
relationship table, and finding all of the comment IDs. Finally, we would use these comment IDs to
filter the comments from the table that stores all of the comments, find their IDs, authors, the actual
comments, ratings, and so on.

In MongoDB, we can simply store the comments in an array of BSON objects embedded in the car
document. As the user clicks on a particular car page, MongoDB performs one single find query and
fetches the car data and all of the associated comments, ready to be displayed. Of course, if we want
to make a user profile page and display all of the data and the comments and reviews made by the
user, we wouldn’t want to have to scan through all of the cars in the database and check if there are
comments. In this case, it would probably be wise to have a separate collection that would store only
users, their profiles, and the comments (storage is cheap!). Data modeling is the process of defining
how our data will be stored and what relationships and types of relationships should exist between
different documents in our data.

Now that we have an idea of what type of fields are available in MongoDB and how we might want to
map our business logic to a (flexible) schema, it is time to introduce collections – groups of documents
and a counterpart to a table in the SQL world.

Collections and databases

With the notion of the schema flexibility already repeated several times, you might be asking yourself if
multiple collections are even necessary? Indeed, if we can store any kind of heterogeneous documents
in a single collection (and MongoDB says we can), why bother with separate collections? There are
several reasons as follows:

• Different kinds (structures) of documents in a single collection make development very
difficult. We could add fields denoting different kinds of documents, but this just brings
overhead and performance issues. Besides, every application, whether web-based or not,
needs to have some structure.

Installing MongoDB and friends 25

• It is much faster (by orders of magnitude) than querying for the document type.

• Data locality: Grouping documents of the same type in a collection will require less disk seek
time, and considering that indexing is defined by collection, the querying is much more efficient.

Although a single instance of MongoDB can host several databases at once, it is considered good
practice to keep all of the document collections used in an application inside a single database. When
we install MongoDB, there will be three databases created and their names cannot be used for our
application database: admin, local, and config. They are built-in databases that shouldn’t be replaced,
so avoid accidentally naming your database the same way.

After reviewing the basic fields, units, and structures that we are able to use in MongoDB, it is time
to learn how to set up a MongoDB database server on our computer and how to create an online
account on MongoDB.com. The local setup is excellent for quick prototyping that doesn’t even require
an internet connection (though in 2022 that shouldn’t be a problem) and the online database-as-a-
service Atlas provides several benefits.

First, it is easy to set up, and, as we will see, you can get up and running literally in minutes with a
generous free tier database ready for work. Atlas takes away much of the manual setup and guarantees
availability. Other benefits include the involvement of the MongoDB team (which tries to implement
best practices), high security by default with access control, firewalls and granular access control,
automated backups (depending on the tier), and the possibility to be productive right away.

Installing MongoDB and friends
The MongoDB ecosystem is composed of different pieces of software, and I remember that when I was
starting to play with it, there was some confusion. It is, in fact, quite straightforward as we will see. Let’s
examine the following various components that we will be installing or using in the following part:

• MongoDB Community Edition – a free full-fledged version of MongoDB that runs on all
major operating systems (Linux, Windows, or macOS) and it is what we are going to use to
play around with data locally.

• MongoDB Compass – a graphical user interface (GUI) for managing, querying, aggregating,
and analyzing MongoDB data in a visual environment. Compass is a mature and useful tool
that we’ll be using throughout our initial querying and aggregation explorations.

• MongoDB Atlas – the database-as-a-service solution from MongoDB. To be honest, this is one
of the main reasons MongoDB is a huge part of the FARM stack. It is relatively easy to set up
and it relieves us from manually administering the database.

Setting Up the Document Store with MongoDB26

• MongoDB Shell – a command-line shell that we can use not only to perform simple Create,
Read, Update, Delete (CRUD) operations on our database, but also to perform administrative
tasks such as creating and deleting databases, starting and stopping services, and similar jobs.

• MongoDB Database Tools – several command-line utilities that enable administrators and
developers to export or import data to and from a database, provide diagnostics, or enable
manipulation of files stored in MongoDB’s GridFS system.

The MongoDB ecosystem is constantly evolving, and it is quite possible that when you read these pages,
the latest version numbers will be higher or some utility might have changed its name. MongoDB
recently released a product called Realm, which is a real-time development platform useful for building
mobile apps or Internet of Things (IoT) applications, for instance. We will not cover all of the steps
necessary to install all the required software as we do not find a huge stack of screenshots particularly
inspiring. We will instead focus on the overall procedure and try to pinpoint the key steps that are
necessary in order to have a fully functional installation.

Installing MongoDB and Compass on Windows

We will be installing the latest version of MongoDB Community Edition, which at the time of writing
is 5.0.6. The minimum requirements listed on the website for the Windows edition are Windows 10
or later, 64-bit editions, or Windows Server 2019. It is important to note that MongoDB supports only
64-bit versions of these platforms. To install MongoDB and Compass, you can refer to the following
steps, although we strongly advise you to look at the instructions on the MongoDB website as well,
as they might slightly change:

1. To download the installer, head over to the download page at https://www.mongodb.
com/try/download/community, select the Windows version, and click on Download
as follows:

Figure 2.1 – Selecting the latest Windows 64-bit installer from the MongoDB download page

https://www.mongodb.com/try/download/community
https://www.mongodb.com/try/download/community

Installing MongoDB and friends 27

2. When the file is downloaded, locate it on your computer and execute it. If a security prompt
asks Open Executable File, select Yes and proceed to the MongoDB setup wizard. The wizard
will open the following page:

Figure 2.2 – Starting the MongoDB installer

3. Read the license agreement, select the checkbox, and then click on Next.

Setting Up the Document Store with MongoDB28

4. This is an important screen. When asked which type of setup to choose, select Complete,
as follows:

Figure 2.3 – Selecting the Complete installation – click Complete, then Next

5. Another rather important screen follows. The following screen allows us to select whether we
want MongoDB to run as a Windows network service (we do) and we can select the data and
log directories. We will leave the default values as follows:

Installing MongoDB and friends 29

Figure 2.4 – The MongoDB service customization screen with the desired (default) values

Figure 2.4 shows that we want to select Install MongoDB—the MongoDB daemon—as a
Windows service, which basically means that we will not have to start it manually. The rest
of the settings are left as default as well as Data Directory and Log Directory.

6. Another screen will ask you if you want to install Compass, MongoDB’s GUI tool for database
management. Please check the checkbox and proceed to install it.

7. Finally, the User Account Control (UAC) Windows warning screen will pop up, and you
should select Yes.

8. At this point, we should be able to test whether MongoDB is running (as a service), so enter the
following command in the command prompt of your choice (we like to use cmder, available at
https://cmder.app) and type the following:

mongo

https://cmder.app

Setting Up the Document Store with MongoDB30

9. You should see various notifications and a tiny prompt denoted with >. Try typing the following:

show dbs

If you see the automatically generated tables admin, config, and locals, you should be good
to go.

After installing MongoDB, we can navigate to the default Windows directory that hosts our database
files as well as the executable files, as follows:

C:\Program Files\MongoDB\Server\5.0

Let’s check the installation of Compass. We should be able to find it in our start menu under
MongoDBCompass (all words attached). It should look like the following:

Figure 2.5 – The initial screen of MongoDB Compass

If we just click the green Connect button, without pasting or typing in any connection string, Compass
will connect to the local MongoDB service and we should be able to see all of the databases that we
saw when we used the command line with MongoDB: admin, db, and local.

The last local installation that we can and should execute is for a group of utilities called MongoDB
Database Tools. You should just head over to https://www.mongodb.com/try/download/
database-tools and select the latest version (at the time of writing, it is 100.5.2). The actual
download page contains all of the MongoDB-related files and looks like the following:

https://www.mongodb.com/try/download/database-tools
https://www.mongodb.com/try/download/database-tools

Installing MongoDB and friends 31

Figure 2.6 – The MongoDB downloads page

Once you have scrolled to the MongoDB Database Tools tab, you will be presented with a small box
on the right – titled Available Downloads. You should choose the latest version, check your platform
(in our case it is Windows x86_64) and the .msi Windows package installer, as follows:

Figure 2.7 – The MongoDB Database Tools download page

Setting Up the Document Store with MongoDB32

Be careful to select the .msi package and run the installer using the standard procedure (accept the
agreement, confirm the UAC popup, and so on).

The only modification that you should do, although it is not mandatory, is to select the bin directory
in the previously installed MongoDB folder. This will facilitate the use of the utilities, although we
will mostly use Compass to start playing with some data.

Now we will go through the process of installing MongoDB on a standard Linux distribution.

Installing MongoDB and Compass on Linux – Ubuntu

Linux offers numerous benefits for the development and management of local servers, but most
importantly, should you decide that the database-as-a-service of MongoDB isn’t what you want to
use anymore, you will probably be going to work on a Linux-based server.

In this book, we will go over the installation process on Ubuntu version 20.4 LTS (Focal), while the
MongoDB version supports the last three long-term support (LTS) versions on x86_64 architecture
(Focal, Bionic, and Xenial). As in the earlier paragraph for Windows 10, we will list the necessary steps
here, but you should always check the MongoDB Ubuntu installation page for last-minute changes.
The process, however, shouldn’t change.

The following actions are to be performed in a Bash shell. We are going to download the public key
that will allow us to install MongoDB, then we will create a list file and reload the package manager.
Similar steps are required for other Linux distributions, so be sure to check them on your distribution
of choice’s website. Finally, we will perform the actual installation of MongoDB through the package
manager and start the service.

It is always preferable to skip the packages provided by the Linux distribution as they are often not
updated to the latest version. Perform the following steps to install MongoDB on Ubuntu:

1. You should import the public key used by the package manager as follows:

wget -qO - https://www.mongodb.org/static/pgp/server-
5.0.asc | sudo apt-key add -

2. After the preceding step has finished installing, you have to create a list file for MongoDB as
follows:

echo "deb [arch=amd64,arm64] https://repo.mongodb.org/
apt/ubuntu focal/mongodb-org/5.0 multiverse" | sudo tee /
etc/apt/sources.list.d/mongodb-org-5.0.list

3. Reload the package manager as follows:

sudo apt-get update

Installing MongoDB and friends 33

4. Finally, install MongoDB as follows:

sudo apt-get install -y mongodb-org

If you follow these instructions and install MongoDB through the package manager, the
/var/lib/mongodb data directory and the /var/log/mongodb log directory will
be created during the installation.

5. Start the mongod process using the systemctl process manager as follows:

sudo systemctl start mongod

sudo systemctl daemon-reload

6. You should be able to start using the MongoDB shell by typing the following command:

mongosh

If you have issues with the installation, our first advice would be to visit the MongoDB Linux installation
page, but MongoDB isn’t particularly different than any other Linux software when it comes to
installation and process management.

Setting up Atlas

MongoDB Atlas—a cloud service by MongoDB—is one of the strongest selling points of MongoDB.
As their website puts it:

Database-as-a-Service, is one of the many -as-a-Service web development stages that have been running
in the Cloud over the last decade (we also have platforms as a service and others). It just means that all
or most part of the database administration and installation work is offloaded to a cloud service in a
highly simplified, customizable and optimized procedure. It allows for a fast start, but also offers sensible
and often optimal defaults when it comes to security, scalability and performance.

Atlas is a cloud database that manages all the hard work and abstracts the majority of operations
such as deployment, management, and diagnostics while running on a provider of our choice (AWS,
GCP, or Azure).

We believe that the processes of signing up and setting up a MongoDB Atlas instance are very well
documented on the site at https://www.mongodb.com/basics/mongodb-atlas-
tutorial.

https://www.mongodb.com/basics/mongodb-atlas-tutorial
https://www.mongodb.com/basics/mongodb-atlas-tutorial

Setting Up the Document Store with MongoDB34

After setting up the account (we used a Gmail address so we can log in with a Google account – it’s
faster), you will be prompted to create a cluster. You will select a Shared Cluster, which is free and you
should select the Cloud Provider & Region as close to your physical location as possible in order to
minimize latency. After a couple of minutes, you will be greeted by an administration page that can
be a bit overwhelming at first. We will just walk you through the important screens. To set up Atlas,
perform the following steps:

1. Select a free M0 sandbox, as shown in the following screenshot:

Figure 2.8 – Choose the Shared Cluster on MongoDB Atlas

2. Give your cluster a meaningful name, choose the nearest location in order to minimize latency,
and then choose the Shared option as follows:

Installing MongoDB and friends 35

Figure 2.9 – Atlas deployment options

3. In the menu, create a new database user, choose Password as the authentication method, and
create them in the following fields. Later, you can let Atlas autogenerate a super secure password
for you, but for now, choose something that will be easy to remember also when creating the
connection string for Compass and the later Python connectors.

Figure 2.10 – The Database Access screen

Setting Up the Document Store with MongoDB36

4. In this step, select a cloud provider and a region. It is advisable to select the region nearest to
your geographical location in order to have the fastest response.

Figure 2.11 – The Cloud Provider & Region screen

5. Finally, you should select the desired cluster tier. Since we want to begin with a free tier, you
should select the M0 Sandbox option (shared RAM, 512 MB Storage). Do not worry, you can
always change the plan later, and the free tier will be more than sufficient for your initial projects.

Figure 2.12 – Select the M0 Sandbox

Installing MongoDB and friends 37

6. Then go ahead and add a name for the cluster as shown in the following screenshot:

Figure 2.13 – Type a meaningful name for your new cluster

The name isn’t really important at this point, but soon you will have more clusters and it is
wise to start naming them properly from the beginning.

7. When you create a new database user, you will be presented with several options for authentication.
In this phase, select Password as the authentication method (the first option). In the text boxes
that will be underneath it, you should insert your username and password combination. These
credentials will be used to access your online database.

Setting Up the Document Store with MongoDB38

Figure 2.14 – Choose a username and password

8. The created user won’t be of much use if you do not give them the privileges to read and write,
so check that in the built-in roles dropdown as follows:

Installing MongoDB and friends 39

Figure 2.15 – Select read and write for the new user

Importing (and exporting) data with Compass

Now, we cannot have even a vague idea of what we can or cannot do with our data if we don’t have
any data to begin with. In the GitHub repository of the book, in the chapter2 folder, you will find
a comma-separated values (CSV) file called cars_data.csv.

Download the file and save it somewhere handy. To understand the data importing and exporting
process, perform the following steps:

1. After you open Compass and click on Connect, without entering a connection string, you will
be connected to the local instance of MongoDB that is running as a service on your computer.

Setting Up the Document Store with MongoDB40

2. Click on the Create Database button and insert the database name carsDB and the collection
name cars, as follows:

Figure 2.16 – The Create Database screen

3. After this step, a new database should be available in the left-hand menu, called carsDB. Select
this database on the left and you will see that we created a collection called cars. In fact, we
cannot have a database without collections. There is a big Import Data button in the middle,
and you will use it to open a dialog as follows:

Figure 2.17 – The Import Data button in Compass

Installing MongoDB and friends 41

4. After hitting the Import Data button, locate the previously downloaded CSV file and you
will be presented with the opportunity to tune the types of the individual columns as follows:

Figure 2.18 – The screen for selecting the file to be imported

This is important, especially because we’re importing initial data and we do not want to have integers
or floating numbers being interpreted as strings. The MongoDB drivers, such as Motor and PyMongo,
that we will be using are “smart” enough to figure out the appropriate data types; however, when dealing
with Compass or similar GUI database tools, it is imperative that you take the time to examine all of
the data columns and select the appropriate data types.

Setting Up the Document Store with MongoDB42

This particular file that we imported contains data about 7,323 cars and the default for all the fields
is string. We made the following modifications when importing:

• Set the columns year, price, km, kW, cm3, and standard to Number

• Set the imported and registered columns to Boolean

The names of the columns are pretty self-explanatory, but we will examine them more later. Now,
once you hit the Import button, you should have a pretty decent collection with a little over 7,000
documents, each having an identical structure that we believe will facilitate the understanding of the
operations that we are going to perform later on.

Later, we will see how we can use Compass to run queries and aggregations and export the data in
CSV or JSON formats in a pretty similar way to the import that we just did. We suggest that you play
around with the interface and experiment a bit. You can always delete the collection and the database,
and then redo our data import from the CSV file from the repository.

Now, we will show you how you can connect your Mongo Atlas online database instance to Compass
and use the GUI in the exact same way in order to manipulate the online database that we created
when we made the Atlas account. Perform the following steps:

1. In order to make Compass connect to a local instance of MongoDB, you do not need to provide
any connection string. To connect to an Atlas instance, however, you should head over to the
Database Deployments page on Atlas and click on the Connect button as follows:

Figure 2.19 – Atlas and Compass connect popup page

2. After clicking on the Connect button, select Connect to Compass, the latest version, and you
will be presented with the following screen:

MongoDB querying and CRUD operations 43

Figure 2.20 – Connection string

3. The connection string, beginning with mongodb+srv://, will be at the bottom of the screen.
You should copy it, replace the <username> and <password> with your actual username
and password that you previously created, and paste it in the initial screen of Compass in the
New Connection field. You should be able to connect!

Phew! We understand that this section was a bit overwhelming, but now you should have a fully
functional instance of the world’s most popular NoSQL database on your machine. You have also
created an online account and managed to create your very own cluster, ready to take on most data
challenges and power your web app. Now it is time to start exploring the bread and butter of MongoDB:
querying, creating new documents, updating, and deleting.

MongoDB querying and CRUD operations
After all this setting up, downloading, and installing, it is finally time to see MongoDB in action and
try to get what all the fuss is about. In this section, we will show, through some simple examples, the
most essential MongoDB commands. Though simple, these methods will enable us, the developers,
to take control of our data, create new documents, query documents by using different criteria and
conditions, perform simple and more complex aggregations, and output data in various forms. You
might say that the real fun begins here!

Setting Up the Document Store with MongoDB44

Although we will be talking to MongoDB through our Python drivers (Motor and PyMongo), we
believe that it is better to learn how to write queries directly. We will begin by querying the data that we
have imported, as we believe that it is a more realistic scenario than just starting to make up artificial
data, then we will go through the process of creating new data – inserting, updating, and so on. Let’s
first define our two options for executing MongoDB commands as follows:

• Compass interface

• MongoDB shell

We will now set up both options for working and executing commands on our local database and the
cloud database on Atlas as well. Perform the following steps:

1. In a shell session (Command Prompt on Windows or Bash on Linux), run the following command:

mongo

2. As earlier described when we were testing if the installation succeeded, we are going to be
greeted with a minimal prompt: >. Let’s see whether our carsDB database is still present and
type the following command:

show dbs

This command should list all of the available databases: admin, carsDB (our database),
config, and local.

3. In order to use our database, let’s type the following code:

use carsDB

The console will respond with „switched to db carsDB“ and that means that now
we can query and work on our database.

4. To see the available collections inside the carsDB, try the following code:

show collections

You should be able to see our only collection, cars, the one in which we dumped our 7,000+ documents
from the downloaded CSV file. Now that we have our database and collection available, we can proceed
and explore some querying options.

With Compass, we just have to start the program and click on the Connect button, without pasting
the connection string. After that, you should be able to see all of the aforementioned databases in the
left-hand menu and you can just select carsDB and then the cars collection, which resembles a folder
inside the carsDB database.

Let’s start with some basic querying!

MongoDB querying and CRUD operations 45

Querying MongoDB

As we mentioned earlier, MongoDB relies on a query language that is based on methods, rather than
SQL. This query language has different methods that operate on collections and take parameters as
JavaScript objects that define the query. We believe it is much easier to see how querying works, so
let’s try out some basic queries. We know we have over 7,000 documents in our carsDB database, and
these are real documents that, at a certain point in time a couple of years ago, defined real ads of a
used cars sales website. We chose this dataset, or at least a part of it, because we believe that working
with real data with some expected query results, and not abstract or artificial data, helps reinforce
the acquired notions and makes understanding the underlying processes easier and more thorough.

The most frequent MongoDB query language commands—and the ones that we will be covering—are
the following:

• find(): A query for finding and selecting documents matching simple or complex criteria

• insertOne(): Inserts a new document into the collection

• insertMany(): Inserts an array of documents into the collection

• updateOne() and updateMany(): Update one or more documents according to some
criteria

• deleteOne() and deleteMany(): Delete documents from the collection

As you can see, the MongoDB query methods closely match the HTTP verbs of a REST API!

We have over 7,000 documents, so let’s take a look at them. To query for all the documents, type in
the MongoDB shell the following command:

db.cars.find()

The preceding command will print several documents as follows:

{ "_id" : ObjectId("622c7b636a78b3d3538fb967"), "brand" :
"Fiat", "make" : "Doblo", "year" : 2015, "price" : 5700, "km"
: 77000, "gearbox" : "M", "doors" : "4/5", "imported" : false,
"kW" : 66, "cm3" : 1248, "fuel" : "diesel", "registered" :
true, "color" : "WH", "aircon" : "1", "damage" : "0", "car_
type" : "PU", "standard" : 5, "drive" : "F" }

{ "_id" : ObjectId("622c7b636a78b3d3538fb968"), "brand" :
"Fiat", "make" : "Doblo", "year" : 2015, "price" : 7500, "km"
: 210000, "gearbox" : "M", "doors" : "4/5", "imported" : false,
"kW" : 66, "cm3" : 1248, "fuel" : "diesel", "registered" :
false, "color" : "WH", "aircon" : "2", "damage" : "0", "car_
type" : "PU", "standard" : 5, "drive" : "F" }

{ "_id" : ObjectId("622c7b636a78b3d3538fb969"), "brand" :

Setting Up the Document Store with MongoDB46

"BMW", "make" : "316", "year" : 2013, "price" : 10800, "km" :
199000, "gearbox" : "M", "doors" : "4/5", "imported" : false,
"kW" : 85, "cm3" : 1995, "fuel" : "diesel", "registered" :
true, "color" : "VAR", "aircon" : "2", "damage" : "0", "car_
type" : "SW", "standard" : 6, "drive" : "B" }

{ "_id" : ObjectId("622c7b636a78b3d3538fb96a"), "brand" :
"Citroen", "make" : "C3", "year" : 2010, "price" : 3200, "km"
: 142000, "gearbox" : "M", "doors" : "4/5", "imported" : false,
"kW" : 50, "cm3" : 1398, "fuel" : "diesel", "registered" :
true, "color" : "WH", "aircon" : "2", "damage" : "0", "car_
type" : "HB", "standard" : 4, "drive" : "F" }

The console will print the message Type „it“ for more as the console prints out only 20 items
at a time. This statement could be interpreted as a classic SELECT * FROM TABLE in the SQL
world. Let’s see how we can restrict our query and return only cars made in 2019 (it should be the last
available year, as the dataset isn’t really fresh). In the command prompt, issue the following command:

db.cars.find({year:2019})

The results should now contain only documents that satisfy the condition that the year key is equal
to 2019. This is one of the keys or CSV fields that, when importing, we have set to the numeric type.

The JavaScript object that we used in the previous query is a filter, and it can have numerous key-value
pairs with which we define our query method. MongoDB has many operators that enable us to
query fields with more complex conditions than plain equality, and their updated documentation is
available on the MongoDB site at https://docs.mongodb.com/manual/reference/
operator/query/.

We invite you to visit the page and look around some of the operators as they can give you an idea
of how you might be able to structure your queries. We will try combining a couple of them to get a
feel for it.

Let’s say we want to find all Ford cars made in 2016 or later and priced at less than 7,000 euros. The
following query will do the job:

db.cars.
find({year:{'$gt':2015},price:{$lt:7000},brand:'Ford'}).
pretty()

https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/

MongoDB querying and CRUD operations 47

Notice that we used three filter conditions: ‘$gt’:2015 means “greater than 2015”, we set the
price to be less than 7000, and finally, we fixed the brand to be ‘Ford’. The find() method
implies an AND operation, so only documents satisfying all three conditions will be returned. At the
end, we added the MongoDB shell function called pretty(), which formats the console output in
a bit more readable way. The result should look like the following:

{

 "_id" : ObjectId("622c7b636a78b3d3538fbb72"),

 "brand" : "Ford",

 "make" : "C Max",

 "year" : 2016,

 "price" : 6870,

 "km" : 156383,

 "gearbox" : "M",

 "doors" : "4/5",

 "imported" : true,

 "kW" : 92,

 "cm3" : 1596,

 "fuel" : "petrol",

 "registered" : false,

 "color" : "VAR",

 "aircon" : "2",

 "damage" : "0",

 "car_type" : "VAN",

 "standard" : 5,

 "drive" : "F"

}

{

 "_id" : ObjectId("622c7b646a78b3d3538fce03"),

 "brand" : "Ford",

 "make" : "Fiesta",

 "year" : 2016,

 "price" : 6898,

 "km" : 149950,

 "gearbox" : "M",

 "doors" : "4/5",

 "imported" : false,

Setting Up the Document Store with MongoDB48

 "kW" : 55,

 "cm3" : 1461,

 "fuel" : "diesel",

 "registered" : true,

 "color" : "BL",

 "aircon" : "2",

 "damage" : "0",

 "car_type" : "HB",

 "standard" : 6,

 "drive" : "F"

}

We have seen the find() method in action and we have seen a couple of examples where the
find() operator takes a filter JavaScript object in order to define a query. Some of the most used
query operators are $gt (greater than), $lt (less than), and $in (providing a list of values), but
as we can see from the MongoDB website, there are many more – logical and, or, or nor, geospatial
operators for finding the nearest points on a map, and so on. It is time to explore other methods that
allow us to perform queries and operations.

findOne() is similar to find() and it takes an optional filter parameter but returns only the
first document that satisfies the criteria.

Before we dive into the process of creating or deleting and updating existing documents, we want to
mention a very useful method called projection, which allows us to limit and set the fields that will
be returned from the query results. The find() (or findOne()) method accepts an additional
object that tells MongoDB which fields within the returned document are included or excluded.

Building projections is easy; it is just a JSON object in which the keys are the names of the fields, while
the values are 0 if we want to exclude a field from the output, or 1 if we want to include it. The ObjectId
is included by default, so if we want to remove it from the output, we have to set it to 0 explicitly. Let’s
try it out just once; let’s say that we want the top 5 oldest Ford Fiestas with just the year of production
and the kilometers on the meter, so we type the following command:

db.cars.find({brand:'Ford',make:'Fiesta'},{year:1,km:1,_id:0}).
sort({'year':1}).limit(5)

We sneaked in two things here, the sort and the limit parts, but we did it on purpose so we can
have a glimpse of the MongoDB aggregations (albeit the simplest ones) and to see how intuitive the
querying process can be. The projection part, however, is hidden in the second JSON object provided
for the find() method. We simply stated that we want the year and the km variable, and then we
suppressed _id since it will always be returned by default.

MongoDB querying and CRUD operations 49

Always reading and sorting the same documents can become a bit boring and quite useless in a real-
life environment. In the next section, we will learn how to create and insert new documents into our
database. Creating documents will be the entry point to any system that you will be building, so let’s
dive in!

Creating new documents

The method for creating new documents in MongoDB is insertOne(). You can try inserting the
following fictitious car into our database:

db.cars.insertOne({'brand':'Magic Car','make':'Green Dragon',
'year':1200})

MongoDB will now gladly accept our new car even though it doesn’t look like the earlier imported
cars and it will print out the following important message:

{

 "acknowledged" : true,

 "insertedId" : ObjectId("622da66da111a4265fd4f526")

}

The first part means that MongoDB acknowledged the insertion operation, whereas the second property
prints out the ObjectId, which is the primary key that MongoDB uses and assigns automatically
if not provided manually.

MongoDB, naturally, also supports inserting many documents at once with the insertMany()
method. Instead of providing a single document, the method accepts an array of documents.

We could, for example, insert another couple of Magic Cars as follows:

db.cars.insertMany([{brand:'Magic Car',make:'Yellow
Dragon',year:1200},{brand:'Magic Car',make:'Red
Dragon',legs:4}])

Here we inserted two new highly fictitious cars and the second one has a new property, legs, which
does not exist in any other car, just to show off MongoDB’s schema flexibility. The shell acknowledges
(reluctantly? We’ll never know) and prints out the ObjectIds of the new documents.

Updating documents

Updating documents in MongoDB is possible through several different methods that are suited for
different scenarios that might arise in your business logic.

Setting Up the Document Store with MongoDB50

The updateOne() method updates the first encountered document with the data provided in the
fields. For example, let’s update the first Ford Fiesta that we find, add a Salesman field, and set it
to Marko as follows:

db.cars.updateOne({make:'Fiesta'},{$set:{'Salesman':'Marko'}})

We can also update existing properties of the document as long as we use the $set operator. Let’s say
that we want to reduce the prices of all Ford Fiestas in a linear way (not something you would want
to do in real life, though) by 200. You could try it with the following command:

db.cars.updateMany({make:'Fiesta'},{$inc:{price:-200}})

The preceding command updates many documents, namely all cars that satisfy the simple requirement
of being a Fiesta (note that if another car producer, like Seat, decided to make a car named Fiesta, we
would have to specify the brand as well) and makes use of the $inc operator (increment). Then, we
pass the price field and the amount that we wish to increment the value. In our case, that would
be minus 200 euros.

Updating documents is an atomic operation – if two or more updates are issued at the same time, the
one that reaches the server first will be applied.

MongoDB also provides a replaceOne operator that takes a filter, like our earlier methods, but
expects also an entire document that will take the place of the preceding one. It is worth mentioning
that there is also a very handy method, within updateOne(), that enables us to check whether
the document to be updated exists and then update it, but in the case that no such document exists,
the method will create it for us. The syntax is the same as a standard updateOne() method, but
with the {"upsert":true} parameter.

Updating single documents should generally involve the use of the document’s ID.

Deleting documents

Deleting documents works in a similar way to the find methods – we provide a filter specifying
the documents to be deleted and we can use the delete or the deleteMany method to execute
the operation. Let’s delete all of our Magic Car automobiles under the pretext that they are not real,
as follows:

db.cars.deleteMany({brand:'Magic Car'})

The shell will acknowledge this operation with a deletedCount variable equal to 3 – the number
of deleted documents. The deleteOne method operates in a very similar way.

MongoDB querying and CRUD operations 51

Finally, we can always drop the entire cars collection with the following command:

db.cars.drop()

Note
Make sure to import the data again from the CSV file if you delete all of the documents or drop
the collection since there won’t be any data left to play with!

Cursors

One important thing to note is that the find methods return a cursor and not the actual results. The
actual iteration through the cursor will be executed in a particular and customized way through the
use of a language driver to obtain the desired results. The cursor enables us to perform some standard
database operations on the returned documents, such as limiting the number of results, ordering by
one or more keys ascending or descending, skipping records, and so on.

Since we are doing our MongoDB exploration using the shell (maybe you have been experimenting
with Compass as well), we should point out that the shell automatically iterates over the cursor and
displays the results. However, if we store the cursor in a variable, we can use some JavaScript methods
on it and see that it exhibits, in fact, typical cursor behavior.

Let’s create a cursor for the Ford Fiesta cars as follows:

let fiesta_cars = db.cars.find({'make':'Fiesta'})

Now you can play around with the fiesta_cars variable and apply various methods such as
next(), hasNext(), and similar cursor operations. The point is that the query is not sent to the
server immediately when the shell encounters a find() call, but it waits until we start requesting
data. This has several important implications, but it also enables us to apply an array of methods that
return the cursor itself, thus enabling the chaining of methods.

Very similarly to jQuery or D3.js if you ever used them, chaining enables a nifty way of applying several
operations on a cursor and returning a fine-tuned result set. Let’s see a simple example in action. We
want the top 5 cheapest cars made in 2015, as follows:

db.cars.find({year:2015},{brand:1,make:1,year:1,_
id:0,price:1}).sort({price:1}).limit(5)

Setting Up the Document Store with MongoDB52

For simplicity, we have added a projection to only return the brand, the model (make), and the year.
The following output is what we got:

{ "brand" : "Fiat", "make" : "Panda", "year" : 2015, "price" :
4199 }

{"brand": "Škoda", "make" : "Fabia", "year" : 2015, "price" :
4200 }

{"brand": "Fiat", "make" : "Grande Punto", "year" : 2015,
"price" : 4200 }

{"brand": "Fiat", "make" : "Panda", "year" : 2015, "price" :
4300 }

{"brand": "Opel", "make" : "Corsa", "year" : 2015, "price" :
4499 }

Finally, we will take a look at the MongoDB aggregation framework – an extremely useful tool that
enables us, the developers, to offload some (or most) of the computing burden of making calculations
and aggregations of varying complexity to the MongoDB server and spare our client-side, as well as
our (Python-based) backend, some workload. The aggregation framework will prove itself especially
valuable when we try to build some analytic charts showcasing prices, years, brands, and models.

Aggregation framework
In the following pages, we will try to provide a brief introduction to the MongoDB aggregation
framework, what it is, what benefits it offers, and why it is regarded as one of the strongest selling
points of the MongoDB ecosystem.

Centered around the concept of a pipeline (something that you might be familiar with if you have done
some analytics or if you have ever connected a few commands in Linux), the aggregation framework
is, at its simplest, an alternative way to retrieve sets of documents from a collection; it is similar to
the find method that we already used extensively but with the additional benefit of the possibility
of data processing in different stages or steps.

With the aggregation pipeline, we basically pull documents from a MongoDB collection and feed them
sequentially to various stages of the pipeline where each stage output is fed to the next stage’s input
until the final set of documents is returned. Each stage performs some data-processing operations
on the currently selected documents, which include modifying documents, so the output documents
often have a completely different structure.

Aggregation framework 53

Figure 2.21 – Example of an aggregation pipeline

The operations that can be included in the stages are, for example, match, which is used to include only
a subset of the entire collection, sorting, grouping, and projections. The MongoDB documentation
site is the best place to start if you want to get acquainted with all the possibilities, but we want to
start with a couple of simple examples.

The syntax for the aggregation is similar to other methods – we use the aggregate method, which
takes a list of stages as a parameter.

Probably the best aggregation, to begin with, would be to mimic the find method. Let’s try to get
all the Fiat cars in our collection as follows:

db.cars.aggregate([{$match: {brand:"Fiat"}}])

This is probably the simplest possible aggregation and it consists of just one stage, the $match stage,
which tells MongoDB that we only want the Fiats, so the output of the first stage is exactly that.

Let’s say that in the second stage we want to group our Fiat cars by model and then check the average
price for every model. The second stage is a bit more complicated, but bear with us, it is not that hard.
Run the following lines of code:

db.cars.aggregate([

{$match: {brand:"Fiat"}},

{$group:{_id:{model:"$make"},avgPrice: { $avg: "$price"} }}

])

Setting Up the Document Store with MongoDB54

The second stage uses the $group directive, which tells MongoDB that we want our inputs (in our
case, all the Fiat cars available) grouped, and the _id key corresponds to the document key that
we want to use as the grouping key. The part {model:“$make“} is a bit counterintuitive, but it
just gives MongoDB the following two important pieces of information:

• model: Without quotes or the dollar sign, it is the key that will be used for the grouping, and
in our case, it makes sense that it is called model. We can call it any way we want; it is the key
that will indicate the field that we are doing the grouping by.

• $make: It is actually required to be one of the fields present in the documents. In our case, it
is called make and the dollar sign means that it is a field in the document. Other possibilities
would be the year, the gearbox, and really any document field that has a categorical or ordinal
meaning. The price wouldn’t make much sense.

The second argument in the group stage is the actual aggregation, as follows:

• avgPrice: This is the chosen name for the quantity that we wish to map. In our case, it makes
sense to call it avgPrice, but we can choose this variable’s name as we please.

• $avg: This is one of the available aggregation functions in MongoDB, called accumulator
operators, and they include functions such as average, count, sum, maximum, minimum,
and so on. In this example, we could have used the minimum function instead of the average
function in order to get the cheapest Fiat for every model.

• $price – like $make in the preceding part of the expression, this is a field belonging to the
documents and it should be numeric, since calculating the average or the minimum of a string
doesn’t make much sense.

The following diagram illustrates this particular aggregation pipeline, with an emphasis on the group
stage since we found it the most challenging for newcomers. Once the data is grouped and aggregated
the way we wanted it, we can apply other simpler operations, such as sorting, ordering, and limiting.

Figure 2.22 – Aggregation with grouping

Aggregation framework 55

Pipelines can also include data processing through the project operator – a handy tool for creating
entirely new fields, derived from existing document fields, that are then carried into the next stages.

We will provide just another example to showcase the power of project in a pipeline stage. Let’s
consider the following aggregation:

db.cars.aggregate([

 {$match:{brand:"Opel"}},

 {$project:{_id:0,price:1,year:1,fullName:

 {$concat:["$make"," ","$brand"]}}},

 {$group:{_
id:{make:"$fullName"},avgPrice:{$avg: "$price"} }},

 {$sort: {avgPrice: -1}},

 {$limit: 10}

]).pretty()

This might look intimidating at first, but it is mostly composed of elements that we have already seen.
There is the $match stage (we select only the Opel cars), and there is sorting by the price in descending
order and cutting off at the 10 priciest cars at the end. But the projection in the middle? It is just a way
to craft new variables in a stage using existing ones. In fact, the following part of code is a projection:

{$project:{_id:0,price:1,year:1,fullName:

 {$concat:["$make"," ","$brand"]}}},

In the preceding code, which is similar to what we have seen when using the plain old find()
method, we use zeroes and ones to show or suppress existing fields in the document, but what about
this fullName part? It is just MongoDB’s way of creating new fields by using existing ones. In this
case, we use the concatenate function to create a new field, called fullName, that is put together
by using the existing make and brand fields. So, the output is the following:

{ "_id" : { "make" : "Movano Opel" }, "avgPrice" : 19999 }

{ "_id" : { "make" : "Crossland X Opel" }, "avgPrice" : 15900 }

{ "_id" : { "make" : "GT Opel" }, "avgPrice" : 15500 }

{ "_id" : { "make" : "Mokka Opel" }, "avgPrice" :
10504.833333333334 }

{ "_id" : { "make" : "Insignia Opel" }, "avgPrice" :
9406.068965517241 }

{ "_id" : { "make" : "Adam Opel" }, "avgPrice" : 7899.75 }

{ "_id" : { "make" : "Antara Opel" }, "avgPrice" :
7304.083333333333 }

{ "_id" : { "make" : "Vivaro Opel" }, "avgPrice" : 6156.5 }

Setting Up the Document Store with MongoDB56

{ "_id" : { "make" : "Signum Opel" }, "avgPrice" : 4000 }

{ "_id" : { "make" : "Astra Opel" }, "avgPrice" :
3858.7214285714285 }

We were able to take a quick look at the MongoDB aggregation framework and we have seen a couple
of examples that illustrate the capabilities of the framework. We believe that the syntax and the logic
for the grouping stage are the least intuitive parts, whereas the rest is similar to the simple, find-
based queries. You are now equipped with a powerful tool that will help you whenever you need to
summarize, analyze, or otherwise group and scrutinize your data in an app.

Summary
Trying to condense and reduce the key information about an ecosystem as vast and as feature rich as
MongoDB is not an easy task, and we admit that this chapter is heavily influenced by a personal view of
what the key takeaways and potential traps are. We learned the basic building blocks that define MongoDB
and its structure, and we have seen how to set up a local system as well as an online Atlas account.

You are now able to begin experimenting, importing your own data (in CSV or JSON), and playing with
it. You know the basics of creating, updating, and deleting documents and you have a few simple but
powerful tools in your developer’s toolbox, such as the find method with its peculiar, yet powerful,
filter object syntax, and the aggregation pipelines framework – a strong analytic tool in its own right.
You are now able to set up a MongoDB shop anytime, anywhere; start with a free Atlas instance and
begin coding, without thinking too much about the infrastructure and with the peace of mind that if,
or rather when, the time comes to scale up and accommodate millions of users, your database layer
will be ready and won’t let you down.

In the next chapter, we are going to dive into the process of creating APIs – application programming
interfaces with FastAPI – an exciting and new Python framework. We will try to provide a minimal,
yet complete guide of the main concepts and features that should hopefully convince you that building
APIs can be fast, efficient, and fun. Since learning how to build REST APIs with a framework is much
easier through practice, we will create a very simple, yet comprehensive API that will allow us to
put our freshly created database to good use. We will be able to create new (used) car entries, delete
them, update them, and learn how FastAPI solves most typical development problems along the way.

3
G e t t i n g S t a r t e d

w i t h Fa s t A P I

Arguably the most important part of our FARM stack is going to be the application programming
interface (API). The API is the brain of our system – it implements the business logic (how the data
flows in and out of the system, but more importantly how it relates to the business requirements
inside our system).

I believe that frameworks such as FastAPI are much easier to showcase through simple examples.
So, in this chapter, we will go through some simple endpoints that are minimal self-contained REST
APIs. We will use them to get acquainted with how this powerful framework handles requests and
responses – the cardiovascular system of the web.

This chapter is meant to be a quick start introduction to the framework – here we will focus on standard
REST API practices and how they are implemented in FastAPI. I will show how to send requests
and modify them according to our needs, and I will explain how to retrieve all the data from HTTP
requests – parameters and the body. We will see how easy it is to work with the response and how
intuitive FastAPI is when it comes to setting cookies, headers, and other standard web-related topics.

In this chapter, we will cover the following topics:

• An overview of the FastAPI framework’s main features

• Setup and requirements for a simple FastAPI app

• Specific Python features used in FastAPI (type hinting, annotations, and the async await syntax)

• How FastAPI handles typical REST API tasks – path and query parameters, the request and
response body, headers, and cookies

• How to work with form data

• Anatomy of a FastAPI project and routers

Getting Started with FastAPI58

Technical requirements
For this chapter, you will need the following:

1. Python setup

2. Virtual environments

3. Code editor and plugins

4. Terminal

5. REST clients

Let’s take a look at them in more detail.

Python setup

If you do not have Python installed, now is a good time to do so. Head over to the Python download site
(https://www.python.org/downloads/) and download the installer for your operating
system. The Python website contains excellent documentation for all the major operating systems.
In this book, I will be using the latest, version, which, at the time of writing, is 3.10.1. Make sure that
you install or upgrade to one of the latest Python versions. FastAPI relies heavily on Python hints and
annotations, so any version later than 3.6 should work. Another important thing to check is that the
Python version that you have installed is reachable or, even better, the default version. You can check
this by typing python in your terminal of choice and checking the version.

I will not describe how to install Python on your platform since there are numerous guides online that
certainly cover your setup. You can also install a data science-friendly environment such as Anaconda
(https://www.anaconda.com/products/distribution) if that is something you
are already using or are comfortable with.

Virtual environments

We must create an application directory called FARM. Inside it, we will create a virtual environment. A
virtual environment is an isolated Python environment that includes a copy of the Python interpreter,
which we can use to install the desired packages and only the needed packages – in our case, FastAPI,
the Uvicorn web server, and additional packages that we will use later, as well as FastAPI dependencies
such as Pydantic.

You can think of a virtual environment as a directory tree of Python executable files and packages
that allow us to have different versions of Python and the various third-party packages together on a
single machine, without them interfering with each other.

https://www.python.org/downloads/
https://www.anaconda.com/products/distribution

Technical requirements 59

There are several excellent yet opinionated approaches to creating virtual environments such as pipenv
(https://pipenv.pypa.io/en/latest/), pyenv (https://github.com/pyenv/
pyenv), and others. I will stick to the simplest. After installing Python, you should head to your
apps directory and, in a command prompt of your choice, run the following command:

python -m venv venv

This command should download a new Python executable and create a new directory named venv –
it is the second argument in the command, so this can get a bit confusing. You can name it differently,
but like many other things, this is a useful convention (readymade .gitignore files, for instance,
often include venv to help you avoid putting the virtual environment folder under version control).
Now, we should check that we can activate the newly created environment. In the venv folder, navigate
to the Scripts folder and type activate. The prompt should change and be prepended with
the name of the active environment in parenthesis – that is, $(venv).

You should also have Git installed. Head over to https://git-scm.com/downloads and
just follow the instructions for your operating system.

Apart from a Python environment and Git, you should have installed a shell program – if you are
working on Linux or Mac, you should be fine. On Windows, you can use Windows PowerShell or
something such as Commander (https://cmder.app), a console emulator for Windows that
has some nice features baked in.

Code Editors

While there are many great code editors and integrated development environments (IDEs) for Python,
I strongly recommend Visual Studio Code from Microsoft. Since its release in 2015, it has quickly
become the most popular code editor, it is cross-platform, it provides a lot of integrated tools – such
as an integrated terminal in which we can run our development server – it is pretty lightweight, and it
provides hundreds of plugins suitable for virtually any programming task that you may have to perform.

Since we will be working with JavaScript, Python, React, and a bit of CSS for styling and running a
couple of command-line processes along the way, I believe this is the easiest way to go.

REST Clients

Finally, to be able to test our REST API, we need a REST client. Postman (https://www.postman.
com/) is arguably the most sophisticated and customizable program for testing APIs, but there are
several very viable alternatives. I prefer the simplicity of Insomnia (https://insomnia.rest/),
a GUI REST client with a very clean and simple interface, and HTTPie (https://httpie.io/),
a command-line REST API client that allows us to quickly test our endpoints without leaving the shell.
HTTPie provides other nice features such as an expressive and simple syntax, handling of forms and
uploads, sessions, and so on. Moreover, HTTPie is probably the easiest REST client when it comes
to installation – you can install the Python version just like any other Python package, using pip or
some other option, such as choco, apt (for Linux), brew, and so on.

https://pipenv.pypa.io/en/latest/
https://github.com/pyenv/pyenv
https://github.com/pyenv/pyenv
https://git-scm.com/downloads
https://cmder.app
https://www.postman.com/
https://www.postman.com/
https://insomnia.rest/
https://httpie.io/

Getting Started with FastAPI60

For our purposes, the easiest way to install HTTPie is to activate the virtual environment that we will
be using (cd into the venv directory, navigate to Lib/activate, and then activate it) and then
install HTTPie with pip, as follows:

pip install httpie

Once it’s been installed, you can test HTTPie with the following command:

(venv) λ http GET "https://jsonplaceholder.typicode.com/
todos/1"

If everything went well, you should have a pretty long output that starts with an HTTP/1.1 200 OK.
In the previous command that we issued, you may be wondering what (venv) and the Greek letter
Lambda (λ) mean. venv is just the name of our virtual environment and it means that it has been
activated for the shell that we are using (if you named it some other way, you would see a different
name in parenthesis), while Lambda is the shell symbol used by Commander, my shell emulator. On
Linux, Mac, or Windows PowerShell, you’ll get the standard > symbol. HTTPie makes it very easy to
issue HTTP requests by simply adding POST for POST requests, payloads, form values, and so on.

Installing the necessary packages

After setting up the virtual environment, you should activate it and install the Python libraries required
for our first simple application: FastAPI itself and Uvicorn.

FastAPI needs a server to run – by a server, I mean a piece of software specifically designed to serve
web applications (or REST APIs!). FastAPI exposes an asynchronous server gateway interface (ASGI
– https://asgi.readthedocs.io/)-compatible web application but doesn’t provide us
with a built-in server, so a compatible Python solution is necessary.

I will not get into the specifics of the ASGI specification, but the main takeaway is that it is an
asynchronous interface that enables async non-blocking applications, something that we want to
make full use of our FastAPI capabilities. At the time of writing, the FastAPI documentation site lists
three compatible Python ASGI-compatible servers – Uvicorn, Hypercorn, and Daphne – but we will
stick to the first one as it is the most widely used and is the recommended way to work with FastAPI.
You can find lots of documentation online in case you get stuck, and it offers very high performance.

To install our first two dependencies, make sure you are in your working directory with the desired
virtual environment activated and install FastAPI and Uvicorn:

pip install fastapi uvicorn

Phew! This was a bit long, but now we have a decent Python coding environment that contains a
shell, one or two REST clients, a great editor, and the coolest and hippest REST framework ready to
rock. On the other hand, if you have ever developed a Django or Flask application, this should all be
familiar ground.

https://asgi.readthedocs.io/

FastAPI in a nutshell 61

Finally, let’s pick a folder or clone this book’s GitHub repository and activate a virtual environment (it
is customary to create the environment in a folder named venv inside the working directory, but feel
free to improvize and structure the code as you see fit). Later in this chapter, we will briefly discuss
some options when it comes to structuring your FastAPI code, but for now, just make sure that you
are in a folder and that your newly created virtual environment is activated.

FastAPI in a nutshell
In Chapter 1, Web Development and the FARM Stack, I already mentioned why FastAPI is our REST
framework of choice in the FARM stack. What sets FastAPI apart from other solutions is its speed
of coding and clean code, which enables developers to spot bugs fast and early. The author of the
framework himself, Sebastian Ramirez, often modestly emphasizes that FastAPI is just a mix of
Starlette and Pydantic, while heavily relying on modern Python features, especially type hinting. Before
diving into an example and building a FastAPI app, I believe that it is useful to quickly just go over
the concepts that FastAPI is based on so that you know what to expect.

Starlette

Starlette (www.starlette.io) is an ASGI framework that routinely places at the top in various
web framework speed contests and provides numerous features that are available in FastAPI as well –
WebSocket support, events on startup and shutdown, session and cookie support, background tasks,
middleware implementations, templates, and many more. We will not be coding directly in Starlette,
but it is very useful to know how FastAPI works under the hood and what its origins are.

Python type hinting

Type hinting is a feature introduced in Python version 3.5 in an attempt to provide developers
with the opportunity to check the types of the variables before runtime. By using type annotations,
developers can annotate variables, functions, and classes and give indications of the types that are
expected. It is important to note that these annotations are completely optional and do not make
Python a statically typed language! The annotations are ignored by the Python interpreter, but they
are picked up by static type checkers that will validate the code and check if it is consistent with the
annotations. Code editors and IDEs, such as Visual Studio Code, will be able to provide autocomplete
features, thus speeding up coding, while tools such as Mypy will provide helpful error warnings. The
syntax for type hinting is as follows:

chapter3_types.py

def annotated_function(name: str, age: int) -> str:

 return f"Your name is {name.upper()} and you are {age}

 years old!"

print(annotated_function(name="marko", age=99))

http://www.starlette.io

Getting Started with FastAPI62

Adding the type for the variables is done with a colon, :, while the return type is annotated with an
arrow, ->. This simply means that the function takes two parameters – a string (name) and an integer
(age) – that is supposed to return a string, denoted by the arrow. Note that if you try this function
with a string argument for the age variable, you will still get a valid result.

Types can be the most basic Python types, such as strings or integers, but the Typing module hosts
numerous data structures that can be used when we want to specify that we need a dictionary or a
list or something more complex, such as a list of dictionaries.

Pydantic

Pydantic is a Python library for data validation – it enforces type hints at runtime and provides user-
friendly errors, allowing us to catch invalid data as soon as possible – that is, before they make it deep
into the system and cause havoc. Although it is a parsing library and not a validation tool, it achieves
validation by catching invalid data.

If you are working within a virtual environment that already has FastAPI installed, Pydantic will
already be there since FastAPI depends on it. If you just want to play with Pydantic in a newly created
virtual environment, you can install Pydantic with pip, just make sure that you are in your activated
virtual environment and type:

pip install pydantic

Pydantic enables us to create data models or schemas (not to be confused with MongoDB schemas!),
which are essentially a specification of how your data must be structured: what fields should be present,
what their types are, which are strings, which are integers, Booleans, whether any of them are required,
whether they should have default values in case no value is provided, and so on.

If you have done a bit of web development, you may have run into the painful issues that arise from
the fact that the client of your web application – the user – can send essentially any data that it wants,
not only what you wanted the system to ingest and process. Take, for instance, the request body – we
will see that FastAPI makes it easy to extract all the data that’s sent through the body, but we want to
be able to differentiate various bits of data and only consider what we want and what we allow.

Furthermore, we ultimately want to have that data validated. If we require an integer value, we cannot
let 5 (a string) or 3.4 (a float) pass. Pydantic allows us to explicitly define the expected type and not
only on the receiving end – we can use Pydantic to validate and parse output data as well, making
sure the response body is exactly how we want it to be, including some pretty complex validations.

Let’s say that we want to create a simple model for inserting used cars into our database. The model
should contain the following fields: brand (a string), model (string), year of production (integer),
fuel – that is, if it is petrol, diesel, or LPG powered (enumeration) – and a list of countries in
which it has been registered (list of strings)

FastAPI in a nutshell 63

Pydantic is based on Python hints, and we can derive our model from Pydantic’s BaseModel class
– a class that we will be using to kickstart all of our schemas. Pydantic contains numerous classes
for handling and accommodating different kinds of data, but in the beginning, when defining your
models, you will probably start with a BaseModel class – all the models are inherited from this
class, so this is the class that you will want to import:

chapter3_pydantic.py

from enum import Enum

from typing import List

from pydantic import BaseModel, ValidationError

class Fuel(str, Enum):

 PETROL = 'PETROL'

 DIESEL = 'DIESEL'

 LPG = 'LPG'

class Car(BaseModel):

 brand: str

 model: str

 year: int

 fuel: Fuel

 countries: List[str]

 note:str=”No note”

The code may look complicated at first, but it is quite straightforward. First, we imported the Enum
class, which enables us to create an enumeration type for the admissible types of fuel. From the typing
module, we import List as we will need it to validate our list of countries. brand and model are
declared as string variables, while year is an integer.

Now that we have a model in place, we can explore its capabilities. First, let’s test it out by passing some
valid data and using the json() method, one of many methods that Pydantic provides:

chapter3_pydantic.py (continued)

car = Car(

 brand="Lancia",

 model="Musa",

 fuel="PETROL",

 year="2006",

Getting Started with FastAPI64

 countries=["Italy","France"]

)

print(car.json())

The output will be a nicely formatted JSON file, ready to be used in a web app (note that this file is
not a FastAPI app, but just a regular Python script!):

(venv) λ python pydantic-examples.py
{"brand": "Lancia", "model": "Musa", "year": 2006, "fuel":
"PETROL", "countries": ["Italy", "France"], "note": "No note"}

As you can see, the data is perfectly valid JSON – the countries list is populated (since we haven’t
provided any content for the note, it is populated by default) and the year is correctly cast to an integer!
This is very good and very useful. Let’s try and pass some invalid data. Let’s omit model and make
year a string that cannot be cast to an integer:

chapter3_pydantic.py (continued)

invalid_car = Car(

 brand="Lancia",

 fuel="PETROL",

 year="something",

 countries=["Italy","France"]

)

print(invalid_car.json())

To get a nice error message, all we have to do is make use of Pydantic’s ValidationError class
and wrap it all in a try-catch block:

try:

 invalid_car = Car(

 brand="Lancia",

 fuel="PETROL",

 year="something",

 countries=["Italy","France"]

)

except ValidationError as e:

 print(e)

FastAPI in a nutshell 65

After making this code modification, the command prompt will be gentle to us and pinpoint where
it found errors:

2 validation errors for Car

model

 field required (type=value_error.missing)

year

 value is not a valid integer (type=type_error.integer)

You could play around with other potential errors and try various Pydantic error messages. It is
important to point out that in this example, I only used the json() method, but many more are
available: dict() for returning a Python dictionary, copy() for creating a deep copy of the model,
and so on.

Finally, Pydantic offers individual field validations and with some additional packages installed, we
can perform email validations, URL validations, and anything else that comes to mind. Validation
is available at the field level, but also at the object level – when you need to combine different field
values into a single condition – for example, to check that two passwords have been entered in two
fields on a registration page match.

A pattern that is pretty common when working with Pydantic is the model’s inheritance. You may, for
instance, define a basic car model with just the bare minimum fields and then derive, via inheritance,
different car models for editing, for showcasing in an endpoint that will feed an image gallery, and so
on, similar to what we did with projections in MongoDB. We will implement this later when we start
building our basic app. Another strength of Pydantic is the ability to build complex, nested models
by defining schemas (or models) that rely on other or previously defined models, not unlike nesting
in MongoDB.

With that, we’ve seen what Pydantic is and how it helps us parse and validate data, as well as complex
data structures. However, we’ve only just scratched the surface of what is possible. We haven’t examined
the validator decorator or the additional external packages for special validations, but by understanding
the basic mechanism of Pydantic, we can see how it makes FastAPI’s data flow safe.

Asynchronous I/O

If you have ever made a web app using Node.js, you may have encountered the asynchronous programming
paradigm. The idea is to make operations that are slow compared to others – such as hefty network
calls, reading files from a disk, and similar – run, but at the same time allow the system to respond to
other calls and then return the appropriate response of the long-running process, while not blocking
the other, less time-consuming responses. This is achieved by using an event loop – a manager of
asynchronous tasks that receives requests and can move to the next one, even though the previous
one hasn’t finished and yielded a response.

Getting Started with FastAPI66

The simplest real-life example would be baking a cake – you could do all the operations sequentially:
put the dough in the oven and then grab a chair and sit for 40 minutes staring at the oven until it
is finished. After these 40 minutes, you wait for 10 minutes for the dough to cool off; after that, you
make the cream and let it rest for another 20 minutes, and then spend another 10 minutes putting
it all together. That would take you 70 minutes. In the async version of our cake, we would put the
dough in the oven and start working on the cream right away so that it’s ready by the time the dough
is ready and cool, saving 20 minutes of total preparation time. Include some other meals to prepare
simultaneously, and the time gains will be much more impressive, but you get the idea.

Python has added support for asynchronous I/O programming in version 3.4 and added the async/
await keywords in version 3.6. ASGI was introduced soon after async made its way into the Python
world and the specification outlines how applications should be structured and called. It also defines
the events that can be sent and received. FastAPI relies on ASGI and returns an ASGI-compatible app,
which is why it is so performant.

I will prefix all the endpoint functions in this book with the async keyword, even before we get
to the part where they are necessary. All you need to know at this point is that functions with the
async keyword prepended are coroutines – that is, they run on the event loop. While the simple
examples examined in this chapter will work even without the async keyword, the real power of
asynchronous programming in FastAPI will be visible when we connect to our MongoDB server
through an async driver – Motor.

Standard REST API stuff

I listed the features that make FastAPI our REST API framework of choice in Chapter 1, Web Development
and the FARM Stack. So, in this section, I just want to go over some of the terminologies that are pretty
common in the realm of developing APIs.

Our communication will occur via the HTTP protocol, through HTTP requests and responses. In this
chapter, I will provide an overview of how FastAPI handles both and how it leverages some additional
libraries, such as Pydantic, to help us write faster and with fewer bugs. The server that I will be using
in all the examples will be Uvicorn, although, in a more general way, the whole FastAPI and Uvicorn
part of the code could be considered the server.

The basis of any REST API communication is the relevant URLs and paths. The URL for our local
web development server will be http://localhost:8000 since 8000 is the default port that
Uvicorn uses. The path part (optional) of an endpoint could be /cars, while http is the scheme.
We will see how FastAPI handles paths, why the order when defining endpoint functions in our code
matters, and how we can extract variables from dynamic portions of the path in a simple way.

Every path or address – the URL and the path – provides a list of approved actions that can be
performed on it – HTTP verbs. For example, there might be a page or a URL that lists all the cars on
sale, but you cannot issue a POST request to it since this is not allowed.

How does FastAPI speak REST? 67

In FastAPI, these verbs are implemented as Python decorators. To put it better, they are exposed as
decorators, and they are implemented only if you, the developer, implement them.

FastAPI encourages the proper use of HTTP verbs concerning the data-resource operations that they
perform, so you should always use POST (or the @post decorator) when creating new resources.

Finally, HTTP messages consist of a request/status line, headers, and, optionally, body data. Again,
FastAPI offers us tools to easily create and modify headers, set response codes, and do pretty much
anything that we please with the request and response body. It does so in a very clean and intuitive
way, as we will see shortly.

In this section, we have tried to pinpoint the programming concepts and specific Python features that
FastAPI is built on and enable it to be so performant and produce maintainable code. In the next section,
we will go over some standard REST API operations and see how they are achieved with FastAPI.

How does FastAPI speak REST?
Let’s create a minimal FastAPI application – a classic Hello World example – and start examining how
FastAPI structures the endpoints. I use the term endpoint to specify a unique combination of an URL
(which will always be the same – in our case, our development server – that is, localhost:8000),
a path (the part after the slash), and an HTTP method. In a new folder named Chapter3, for
example, create a new Python file using Visual Studio Code:

chapter3_first_endpoint.py

from fastapi import FastAPI

app = FastAPI()

@app.get("/")

async def root():

 return {"message": "Hello FastAPI"}

In just a few lines of code, we were able to accomplish several things. So, let’s break down what each
part does.

In the first line of chapter3_first_endpoint.py, we imported the FastAPI class from
the fastapi package. Then, we instantiated an application object (we called it app since that is
considered a good practice, but we could have chosen any name). This is just a Python class that
provides all the functionality of our API and exposes an ASGI-compatible application – this is the
application that we have to pass to our server of choice (Uvicorn).

The application is now ready and instantiated, but without endpoints, it isn’t able to do or say very
much. FastAPI, similar to Flask – another popular Python web framework – exposes decorators for
HTTP methods to enable the application to respond. However, we have to implement them.

Getting Started with FastAPI68

After that, we used the @get decorator, which corresponds to the GET method, and we passed a
URL – in our case, we used /, which is the root path.

The decorated function is called root, another convention, but it could be called whatever we wanted
(any valid Python function name). It is responsible for accepting any arguments (in our case, there
aren’t any) and responding. The value that’s returned by the function, which in our case is a simple
Python dictionary, will then be transformed into a JSON response and returned by the ASGI server
as an HTTP response. This may seem obvious, but I believe that it is useful to break things down into
the tiniest bits in the beginning.

The preceding code defines a basic fully functional application with a single endpoint. To be able to
test it, we need a server – enter Uvicorn.

Now, go ahead and run the live server with Uvicorn in your command line:

uvicorn chapter3_first_endpoint:app --reload

The previous line is something that you will be using quite a lot when developing with FastAPI, so
let’s break it down.

Important Information
Uvicorn is our ASGI-compatible web server, and we call it directly by passing it the combination
of the executable Python file (without the extension!) and the instantiated app (the FastAPI
instance), separated by a colon (:). The --reload flag tells Uvicorn to reload the server
each time we save our code, similar to Nodemon if you have worked with Node.js. You can
run all the examples in this book that contain FastAPI apps by using this syntax, except where
something else is suggested.

This is the output that you will get if you test our only endpoint with HTTPie (note that when we omit
the keyword, it defaults to GET):

(venv) λ http "http://localhost:8000/"
HTTP/1.1 200 OK

content-length: 27

content-type: application/json

date: Fri, 01 Apr 2022 17:35:48 GMT

server: uvicorn

{

 "message": "Hello FastAPI"

}

How does FastAPI speak REST? 69

HTTPie informs us that our simple endpoint is running; we got a nice 200 OK status code, content-
type is correctly set to application/json, and the response is a JSON document that contains
the desired message.

The same endpoint tests can be executed with Insomnia, a GUI REST API testing tool. The user
interface is quite intuitive. This is what the same test looks like on my machine:

Figure 3.1 – Testing the root endpoint with Insomnia

Here, we populate the URL field, specify the HTTP method in the dropdown menu, and add every
other piece of information to the request in the menu below. Having prepared the request, we can hit
the Send button and wait for the result to appear.

I am aware that every REST API guide begins with similar silly hello-world examples, but I feel
that with FastAPI, this is useful: in just a couple of lines of code, we can see the anatomy of a simple
endpoint. This endpoint only covers the GET method directed toward the root URL (/), so if you try
to test this app with a POST request, you should get a 405 Method Not Allowed error (or
any method other than GET).

Getting Started with FastAPI70

If we wanted to create an endpoint that responds with the same message but for POST requests, we
would just have to change the decorator:

chapter3_first_endpoint.py (continued)

@app.post("/")

async def post_root():

 return {"message": "Post request success"}

HTTPie will respond accordingly in the terminal:

(venv) λ http POST http://localhost:8000
HTTP/1.1 200 OK

content-length: 35

content-type: application/json

date: Sat, 26 Mar 2022 12:49:25 GMT

server: uvicorn

{

 "message": "Post request success!"

}

Now that we’ve created a couple of endpoints, this is a good time to head over to http://
localhost:8000/docs and see what FastAPI has prepared for us.

Automatic documentation

One of the first really useful features present in FastAPI is its automatically generated documentation.
It is interactive in the sense that we can use it to test our API as it is being developed! FastAPI
automatically lists all the endpoints that we define and provides information about the expected
inputs and responses. The documentation is based on the OpenAPI specification and relies heavily
on Python hints and the parsing and validation library Pydantic. It is an incredibly useful tool that
will make you wish you had it in every framework. In the following sections, however, I will rely more
on standard REST clients as I feel that they provide a more transferrable experience and enable us to
compare different APIs that may not be Python-based, such as Next.js API routes.

We have created a minimal yet fully functional API with a single endpoint and we were able to see the
syntax and structure of an app. In the next section, I am going to cover the basic elements of a REST
API request-response cycle and how we can control every single aspect of the process.

Let’s build a showcase API! 71

Let’s build a showcase API!
REST APIs are all about cycles of HTTP requests and responses – it is the engine that powers the
web and is implemented in every web framework, speaking the language of the web – the HTTP
protocol. I feel that the best way to showcase FastAPI’s capabilities is to dive right in and create simple
endpoints and focus on specific parts of code that achieve the desired functionalities. Rather than the
usual CRUD operations that we will implement in the forthcoming chapters, I want to focus on the
process of retrieving and setting request and response elements.

Retrieving path and query parameters

The first endpoint will be for retrieving a car by its unique ID:

chapter3_path.py

from fastapi import FastAPI

app = FastAPI()

@app.get("/car/{id}")

async def root(id):

 return {"car_id":id}

The first line of the preceding snippet defines a dynamic path: the static part is defined with car/,
while {id} is a standard Python string-formatted dynamic parameter in the sense that it can be
anything – a string or a number.

Let’s try it out and test the endpoint with an ID equal to 1:

(venv) λ http "http://localhost:8000/car/1"
HTTP/1.1 200 OK

content-length: 14

content-type: application/json

date: Mon, 28 Mar 2022 20:31:58 GMT

server: uvicorn

{

 "car_id": "1"

}

Getting Started with FastAPI72

We got our JSON response back, but here, 1 in the response is a string (hint: quotes). You can try this
same route with an ID equal to a string:

(venv) λ http http://localhost:8000/car/billy
HTTP/1.1 200 OK

{

 "car_id": "billy"

}

FastAPI doesn’t complain and returns our string, which was provided as part of the dynamic parameter,
but this is where Python’s newer features come into play. Enter type hinting.

Returning to our FastAPI route (or endpoint), to make the car ID become an integer, it is enough to
hint at the type of the variable parameter. The endpoint will look like this:

@app.get("/carh/{id}")

async def hinted_car_id(id:int):

 return {"car_id":id}

I have given it a new path: /carh/{id} (the h after car means hint). Apart from the name of the
function (hinted_car_id), the only difference is in the argument: the semicolon followed by
int means that we expect an integer, but FastAPI takes this very seriously.

If we take a look at the interactive documentation at http:localhost:8000/docs and try
to insert a string in the id field for the /carh/ endpoint, we will get an error and will not be able
to proceed.

If we try it out in our REST client and test the /carh/ route by passing it a string, we will see that
FastAPI is yelling at us, but this is for our own good! We got several useful messages. First, FastAPI
set the status code for us correctly – that is, 422 Unprocessable Entity – and in the body
of the response, it pointed out what the problem was – the value is not a valid integer. It also gives
us the location where the error occurred: in the path – that is, the id part. This is a trivial example,
but imagine that you are sending a complex request with a complicated path, several query strings,
and maybe additional information in the header. Using type hinting quickly solves these problems.

If you try to access the endpoint without specifying any ID, you will get yet another error:

(venv) λ http http://localhost:8000/carh/
HTTP/1.1 404 Not Found

{

 "detail": "Not Found"

}

Let’s build a showcase API! 73

FastAPI has, again, correctly set the status code, giving us a nice 404 Not Found error, and
repeated this message in the body. The endpoint that we hit does not exist – we need to specify a
value after the slash.

Situations may arise where you have similar paths, but one of them is dynamic, while the other one
is static. A typical case could be an application that has numerous users – hitting the API at the URL
defined by /users/id would give you some information about the user with the selected ID,
while /users/me would typically be an endpoint that displays your information and allows you
to modify it in some way.

In these situations, it is important to remember that, like in other web frameworks, order matters.

The following piece of code will not yield the desired results:

chapter3_wrong_path_order.py

@app.get("/user/{id}")

async def user(id:int):

 return {"User_id":id}

@app.get("/user/me")

async def user():

 return {"User_id":"This is me!"}

By testing the /user/me endpoint, we get an Unprocessable Entity error, much like when we tried
the same thing previously – passing a string in the URL. This is quite logical once you remember that
order matters – FastAPI finds the first matching URL, checks the types, and throws an error. If the
first match is the one with the fixed path, everything works as intended.

Another powerful feature of FastAPI’s path treatment is how it limits the path to a specific set of values
and a path function, imported from FastAPI, which enables us to perform additional validation on
the path.

I will not delve into the details here, but let’s just say that we want to have a URL path that should
accept two values and allow the following:

• account_type: This can be free or pro

• months: This must be an integer between 3 and 12

Getting Started with FastAPI74

FastAPI allows us to solve this at the path level by letting us create a class based on Enum for the
account type. This class defines all the possible values for the account variable. In our case, there are
just two – free and pro:

chapter3_restrict_path.py

from enum import Enum

from fastapi import FastAPI, Path

app = FastAPI()

class AccountType(str, Enum):

 FREE = "free"

 PRO = "pro"

Finally, in the actual endpoint, we combine this class with the utilities from the Path function (do
not forget to import it along with FastAPI from fastapi!):

@app.get("/account/{acc_type}/{months}")

async def account(acc_type:AccountType, months:int = Path(...,
ge=3,le=12)):

 return {

 "message":"Account created",

 "account_type":acc_type,

 "months":months

 }

FastAPI was able to pack a lot of punch in the preceding code: by setting the type of the acc_type
part of the path to our previously defined class, we ensured that only the free or pro value can be
passed. The months variable, however, is handled by the Path utility function.

As for other topics in this part, I strongly advise you to head over to the excellent documentation site
and see what other options are available – in this case, the Path function received three parameters.
The three dots mean that the value is required and that no default value has been provided, ge=3 means
that the value can be greater or equal to 3, while le=12 means that it can be smaller or equal to 12.

With that, we’ve learned how to validate, restrict, and order our path parameters. Now, let’s look
at the query parameters. Query parameters are added at the end of the URL by using the ?min_
price=2000&max_price=4000 format.

Let’s build a showcase API! 75

The question mark in the previous expression is a separator that tells us where the query string begins,
while the ampersands, &, allow us to add more than one assignment (the equals signs, =).

Query parameters are usually used to apply filters, sort, order, or limit query sets, apply paginations to
a long list of results, and similar tasks. FastAPI treats them similarly to path parameters. They will be,
so to say, automatically picked up by FastAPI and available for processing in our endpoint functions.

Let’s create a simple endpoint that accepts two query parameters for the minimum and the maximum
prices of the car:

chapter3_query_string.py

@app.get("/cars/price")

async def cars_by_price(min_price: int=0, max_price:
int=100000):

 return{"Message":f"Listing cars with prices between {min_

 price} and {max_price}"}

Let’s test this endpoint with HTTPie:

(venv) λ http "http://localhost:8000/cars/price?min_
price=2000&max_price=4000"

HTTP/1.1 200 OK

content-length: 60

content-type: application/json

date: Mon, 28 Mar 2022 21:20:24 GMT

server: uvicorn

{

 "Message": "Listing cars with prices between 2000 and 4000"

}

Of course, this particular solution is not very good – we do not ensure the basic condition that the
minimum price should be lower than the maximum price, but that can easily be handled by Pydantic
object-level validation.

Getting Started with FastAPI76

FastAPI picked up our query parameters and performed the same parsing and validation checks
it did previously. It is worth mentioning that FastAPI provides the Query function, which is very
similar to the Path function that we used previously – we can use the greater than, less than, or equal
conditions, as well as set default values.

With that, we’ve seen how FastAPI enables us to work with data that is passed through the path and
query parameters, as well as the tools it uses under the hood to perform parsing and validation as
soon as possible. Now, let’s examine the main data vehicle of REST APIs: the request body.

The request body – the bulk of the data

REST APIs enable two-way communication between a client – usually a web browser or similar
device and an API server. The bulk of this data is carried over in the request and response body. A
request body consists of the data that’s sent from the client to our API, if there is such data, while
the response body is the data sent from the API server to our client(s). This data can be encoded in
various ways (XML was quite popular 15 years ago, for example) but in this book, we will consider
exclusively JavaScript Object Notation (JSON) since it is used everywhere and it plays exceptionally
nicely with our database solution of choice, MongoDB.

When sending data, we should always use POST requests to create new resources, PUT and PATCH
to update resources, and the DELETE method to delete. Since the body of a request can and will
contain raw data – in our case, MongoDB documents or arrays of documents – we will see how we
can leverage the power of Pydantic models to our benefit. But first, let’s see how the mechanism works,
without any validation or modeling.

In the following snippet for a hypothetical endpoint that would be used to insert new cars in our
future database, we pass just the generic request body as the data. We expect it to be a dictionary:

@app.post("/cars")

async def new_car(data: Dict=Body(...)):

 print(data)

 return {

 "message":data

 }

Intuitively, you may have guessed that the Body function is somewhat similar to the previously
introduced Path and Query functions, yet there is a difference – when working with the request
body, this function is mandatory.

Let’s build a showcase API! 77

The three dots indicate that the body is required (you must send something), but this is the only
requirement. Let’s try to insert a car (a Fiat 500, made in 2015):

(venv) λ http POST "http://localhost:8000/cars" brand="FIAT"
model="500" year=2015

HTTP/1.1 200 OK

content-length: 56

content-type: application/json

date: Mon, 28 Mar 2022 21:27:31 GMT

server: uvicorn

{

 "message": {

 "brand": "FIAT",

 "model": "500",

 "year": "2015"

 }

}

Again, FastAPI functions do the heavy lifting for us – we were able to retrieve all the data that was
passed to the request body and make it available to our function for further processing – database
insertion, optional preprocessing, and so on. On the other hand, we could have passed just about any
key-value pairs to the body. For example, we could set the number of legs to 4 (cars do not have legs,
yet), and it would make its way into the request body, disregarding modern car engineering.

Keen observers may have noticed that while all went well, FastAPI sent us a 200 response status again,
even though a 201 Resource Created error may have been more appropriate and, well, exact.
We could have had some MongoDB insertion at the end of the function, after all. Do not worry – we
will see how easy it is to modify the response body as well, but for now, let’s see why Pydantic shines
when it comes to request bodies.

Let’s say that we want to enforce a certain structure for our request body. After all, we cannot allow
users to send arbitrary fields and data and bomb our precious POST endpoint. To create new car
entries, we only want the brand, model, and production year fields.

We will create a simple Pydantic model with the desired types:

chapter3_body2.py

from fastapi import FastAPI, Body

from pydantic import BaseModel

Getting Started with FastAPI78

class InsertCar(BaseModel):

 brand: str

 model: str

 year: int

app = FastAPI()

@app.post("/cars")

async def new_car(data: Dict=Body(...)):

 print(data)

 return {

 "message":data

 }

By now, you already know that the first two parameters are expected to be strings, while the year must
be an integer; all of them are required.

Now, if we try to post the same data that we did previously but with additional fields, we will only get
these three fields back. Also, these fields will go through Pydantic parsing and validation and throw
meaningful error messages if something does not conform to the data specification.

I encourage you to play with this endpoint and try different post-data combinations. The following
is an example:

(venv) λ http POST "http://localhost:8000/carsmodel"
brand="Fiat" model="500" breed="Dobermann" year=2018

HTTP/1.1 200 OK

{

 "message": {

 "brand": "Fiat",

 "model": "500",

 "year": 2018

 }

}

Let’s build a showcase API! 79

This combination of Pydantic model validation and the Body function provides all the necessary
flexibility when working with request data. This is because you can combine them and pass different
pieces of information using the same request bus ride, so to speak.

If we wanted to pass a user with a promo code along with the new car data, we could try to define a
Pydantic model for the user and extract the promo code with the Body function. First, let’s define
a minimal user model:

class InsertUser(BaseModel):

 username: str

 name: str

Now, we can create a more complex function that will process two Pydantic models and an optional
user promo code – we have set the default value to None:

chapter3_body2.py

@app.post("/car/user")

async def new_car_model(

 car: InsertCar,

 user: InsertUser,

 code: int=Body(None)):

 return {

 "car":car,

 "user":user,

 "code":code

 }

For this request, which contains a full-fledged JSON object with two nested objects and some code,
I opted to use Insomnia since I find it easier than typing JSON in the command prompt or resorting
to piping. I guess it is a matter of preference, but I believe that when developing and testing REST
APIs, it is useful to have a GUI tool such as Insomnia or Postman and a command-line client (such
as cURL or httpie). This is what Insomnia looks like when testing this particular endpoint:

Getting Started with FastAPI80

Figure 3.2 – Insomnia REST client interface for testing the endpoint

After playing around with the combination of request bodies and Pydantic models, we have seen
that we can control the inflow of the data and be confident that the data that’s available to our API
endpoint will be what we want it and expect it to be. Sometimes, however, we may want to go to the
bare metal and work with the raw request object. FastAPI covers that case too.

Let’s build a showcase API! 81

The request object

I have mentioned several times that FastAPI is built on the Starlette web framework and that it uses
numerous Starlette features. The raw request object in FastAPI is Starlette’s request object and it can
be accessed in our functions once it’s been imported from FastAPI directly. Bear in mind that by
using the request object directly, you are missing out on FastAPI’s most important features: Pydantic
parsing and validation, as well as self-documentation! However, there might be situations in which
you need to have the raw request.

Let’s look at an example:

chapter3_raw_request.py

from fastapi import FastAPI, Request

app = FastAPI()

@app.get("/cars")

async def raw_request(request:Request):

 return {

 "message":request.base_url,

 "all":dir(request)

 }

In the preceding code, we created a minimal FastAPI app, imported the Request class, and used
it in the (only) endpoint. If you test this endpoint with your REST client, you will only get the base
URL as the message, while the all part lists all the methods and properties of the Request object
so that you have an idea of what is available.

All of these methods and properties are available for you to use in your application.

With that, we’ve seen how FastAPI facilitates our work with the main HTTP transport mechanisms
– request bodies, query strings, and paths. Now, we will cover other, equally important aspects of any
web framework solution.

Cookies and headers, form data, and files

When speaking of the ways our web framework ingests data, any discussion would be incomplete
without including topics such as handling form data, handling files, and manipulating cookies and
headers. This section will provide simple examples of how FastAPI handles these tasks.

Getting Started with FastAPI82

Headers

Header parameters are handled in a similar way to query and path parameters and, as we will see
later, cookies. We can collect them, so to speak, using the Header function. Headers are essential
in topics such as authentication and authorization as they often carry JSON Web Tokens (JWTs),
which are used for identifying users and their permissions.

Let’s try to read the user agent by using the Header function:

from fastapi import FastAPI, Header

app = FastAPI()

@app.get("/headers")

async def read_headers(user_agent: str | None = Header(None)):

 return {"User-Agent": user_agent}

Depending on the software you use to execute the test for the endpoint, you will get different results.
When using HTTPie, I got this:

(venv) λ http GET "http://localhost:8000/headers"
HTTP/1.1 200 OK

content-length: 29

content-type: application/json

date: Sun, 27 Mar 2022 09:26:49 GMT

server: uvicorn

{

 "User-Agent": "HTTPie/3.1.0"

}

On the other hand, Insomnia correctly outputs the version:

{

 "User-Agent": "insomnia/2021.7.2"

}

You can extract all the headers in this way and FastAPI is nice enough to provide further assistance:
it will convert names into lowercase, convert the keys into snake case, and so on.

Cookies

Cookies work in a very similar way and although they can be extracted manually from the Cookies
header, the framework offers a utility function, conveniently named Cookie, that does all the work
in a way similar to Query, Path, and Header.

Let’s build a showcase API! 83

Forms (and files)

So far, we have only dealt with JSON data and that is alright – after all, it is the ubiquitous language of
the web and our main vehicle for moving data back and forth. There are cases, however, that require
a different data encoding – forms might be processed directly by your API, with data encoded as
multipart/form-data or form-urlencoded.

Important Note
Notice that although we can have multiple Form parameters in a path operation, we cannot
declare Body fields that we expect to be in JSON. The HTTP request will have the body encoded
using only application/x-www-form-urlencoded instead of application/
json. This limitation is part of the HTTP protocol and has nothing to do with FastAPI itself.

The simplest way to cover both form cases – with and without including files for upload – is to start
by installing python-multipart, a streaming multipart parser for Python. Stop your server
and use pip to install it:

pip install python-multipart

The Form function works similarly to the previously examined utility functions, but with the difference
that it looks for form-encoded parameters. Let’s look at a simple example in which we wish to upload
a (car!) image and a couple of form fields, such as the brand and the model. I will use a photo that
I found on Pexels (photo by Yogesh Yadav: https://www.pexels.com/photo/white-
vintage-car-parked-on-green-grass-8746027/):

from fastapi import FastAPI, Form, File, UploadFile

app = FastAPI()

@app.post("/upload")

async def upload(file:UploadFile=File(...),
brand:str=Form(...), model:str=Form(...)):

 return {

 "brand": brand,

 "model": model,

 "file_name":file.filename}

The preceding code handles the form parameters via the Form function and the uploaded file by
using the UploadFile utility class.

The photo, however, isn’t saved on the disk – its presence is merely acknowledged, and the filename
is returned. Testing this endpoint in Insomnia looks like this:

https://www.pexels.com/photo/white-vintage-car-parked-on-green-grass-8746027/
https://www.pexels.com/photo/white-vintage-car-parked-on-green-grass-8746027/

Getting Started with FastAPI84

Figure 3.3 – Testing file uploads and form fields with the Insomnia REST client

To save the image to a disk, we need to copy the buffer to an actual file on the disk. The following
code achieves this:

import shutil

from fastapi import FastAPI, Form, File, UploadFile

app = FastAPI()

@app.post("/upload")

async def upload(picture:UploadFile=File(...),
brand:str=Form(...), model:str=Form(...)):

 with open("saved_file.png", "wb") as buffer:

 shutil.copyfileobj(picture.file, buffer)

 return {

 "brand": brand,

 "model": model,

 "file_name":picture.filename

 }

Let’s build a showcase API! 85

The open block opens a file on the disk using a specified filename and copies the FastAPI file that’s sent
through the form. I have hardcoded the filename, so any new upload will simply overwrite the existing
file, but you could use some randomly generated filename while using the UUID library, for example.

File uploading is an operation that you probably won’t be doing this way – file uploads can be handled
by the Python async file library known as aiofiles or as a background task, which is another feature
of FastAPI. However, I wanted to provide a rather complete picture of how you can handle everyday
web tasks with the framework.

FastAPI response customization

In the previous sections, we looked at numerous small examples of FastAPI requests, saw how we
can reach every corner of the request – the path, the query string, the request body, headers, and
cookies – and saw how to work with form-encoded requests. Now, let’s take a closer look at FastAPI’s
response objects. In all the cases that we have seen so far, we returned a Python dictionary that was
then serialized into JSON correctly by FastAPI. The framework enables us, the developers, to customize
the response in a very granular way, as we will see in the next few sections.

The first thing that you may want to change in an HTTP response is going to be the status code.
You may also want to provide some meaningful errors when things do not go as planned. FastAPI
conveniently raises classic Python exceptions when HTTP errors are present. FastAPI puts a lot of
emphasis on using standard-compliant meaningful response codes that minimize the need to create
custom payload messages. For instance, you don’t want to send a 200 OK status code for everything
and then notify users of errors by using the payload – FastAPI encourages good practices.

Setting status codes

HTTP status codes indicate if an operation was successful or if there was an error. These codes
also provide information about the type of operation, and they can be divided into several groups:
informational, successful, client errors, server errors, and so on. It isn’t necessary to memorize the
status codes, although you probably know what a 404 or a 500 code is, unfortunately.

FastAPI makes it incredibly easy to set a status code – it is enough to just pass the desired status_
code variable to the decorator. Here, we are using the 208 status code for a simple endpoint:

from fastapi import FastAPI, status

app = FastAPI()

@app.get("/", status_code=status.HTTP_208_ALREADY_REPORTED)

async def raw_fa_response():

 return {

 "message":"fastapi response"

 }

Getting Started with FastAPI86

Testing the root route in HTTPie yields the following output:

(venv) λ http GET "http://localhost:8000"
HTTP/1.1 208 Already Reported

content-length: 30

content-type: application/json

date: Sun, 27 Mar 2022 20:14:25 GMT

server: uvicorn

{

 "message": "fastapi response"

}

Similarly, we can set status codes for the delete, update, or create operations.

FastAPI sets the 200 status by default if it doesn’t encounter exceptions, so it is up to us to set the
correct codes for the various API operations, such as 204 No Content for deleting, 201 for creating,
and so on. It is a good practice that is particularly encouraged.

Pydantic can be used for response modeling as well – we can limit or otherwise modify the fields that
should appear in the response and perform similar checks that it does for the request body by using
the response_model argument.

I will not get into all the capabilities of FastAPI when it comes to customizing the response, but I will
mention that modifying and setting headers and cookies is as simple as reading them from the HTTP
request and the framework has us covered!

HT TP errors

Errors are bound to happen, no matter how meticulously you design your backend – for example,
users somehow find a way to send the wrong parameters to a query, the frontend sends the wrong
request body, or the database goes offline (although that shouldn’t happen since we will be using
MongoDB!) – anything can happen. It is of paramount importance to detect these errors as soon as
possible (this is a leitmotiv in FastAPI) and send clear and complete messages to the frontend, as well
as the user. We can do this by raising exceptions.

FastAPI heavily relies on web standards and tries to enforce good practices in every facet of the
development process, so it puts a lot of emphasis on using HTTP status codes. These codes provide
a clear indication of the type of problem that has arisen, while the payload can be used to further
clarify the cause of the problem.

FastAPI uses a Python exception, aptly called HTTPExeption, to raise HTTP errors. This class
allows us to set a status code and set an error message.

Summary 87

Returning to our example of inserting new cars into the database, we could set a custom exception
like this:

@app.post("/carsmodel")

async def new_car_model(car:InsertCar):

 if car.year>2022:

 raise HTTPException(

 status.HTTP_406_NOT_ACCEPTABLE,

 detail="The car doesn’t exist yet!"

)

 return {

 "message":car

 }

When trying to insert a car that hasn’t been built yet, the response is as follows:

(venv) λ http POST http://localhost:8000/carsmodel brand="fiat"
model="500L" year=2023

HTTP/1.1 406 Not Acceptable

content-length: 39

content-type: application/json

date: Tue, 29 Mar 2022 18:37:42 GMT

server: uvicorn

{

 "detail": "The car doesn’t exist yet!"

}

This is a pretty contrived example as I do not expect you to make custom exceptions for any possible
problem that might arise, but I believe that this gives a good idea of what is possible and the flexibility
that FastAPI gives you.

We just had a pretty fast ride through the main features of FastAPI, with particular emphasis on
ways to get data out of the request and how to set the response according to our needs. Now, let’s
summarize this chapter.

Summary
It is not easy to cover the basics of such a rich web framework in a relatively short number of pages.
Rather than diving deep into specific topics, we covered very simple examples of how FastAPI achieves
the most common REST API tasks and the way it can help you, as a developer, by leveraging modern
Python features and libraries such as Pydantic.

Getting Started with FastAPI88

In this chapter, you learned how FastAPI enables you to perform requests and responses through
HTTP and how you can tap into it, at any point, and customize and access the elements of the request,
as well as the response. We briefly addressed headers and cookies, query strings and paths, forms and
files, and the main part of the cycle: the request and the response bodies.

Finally, you learned how to split your API into routers and how to organize your app into logical
resource-based units.

There are many features of the framework that we haven’t mentioned and that you are highly likely to
encounter in even the simplest web applications. In Chapter 5, Building the Backend for Our Application,
when we begin developing our simple application with FastAPI and MongoDB, we will learn how
to connect the API to a MongoDB database and when to use an asynchronous driver. There, we will
learn how to split our API into logical units using routers and make extensive use of the FastAPI
dependency injection system.

In the next chapter, we will provide a quick introduction to React – our user interface library of choice.
We will try to cover the absolute minimum necessary so that we can start using and discovering its
incredibly powerful features and simplicity.

4
S e t t i n g U p a

R e a c t Wo r k f l o w

This title might be a bit awkward, but really, I am going to go over a bit of React since it is a vast
topic that deserves a separate book, and there are plenty of very good ones on the market. I listed the
reasons for choosing React in the first place, back when we were analyzing our stack in Chapter 1,
Web Development and the FARM Stack, so we will not go over it again. Instead, I will try to make a
concise and short introduction to React, while pinpointing what I feel are the most important topics
and features that you should be aware of in order to be proficient as soon as possible.

In this chapter, we’re going to create a very simple React app, or better – the frontend of an app –
through which we will showcase the main features and the most salient concepts that will make working
with React worth your while. We will begin with the prerequisites and tools (such as Node.js, some
Visual Studio Code extensions, and more). We will also learn how to use the standard command-line
tool Create React App for quick-starting new applications, and then I will go over the concept of
components and the role of JSX – the essence of React.

We will design a simple application in terms of components, and we will see how decoupling helps us
write modular and maintainable code. We will briefly glance over two of the most important hooks
and see how they solve some web development problems that are as ancient as the web itself. Finally,
we will deploy our shell app and briefly discuss the deployment possibilities.

In this chapter, we will cover the following main topics:

• The basic ideas behind React

• Creating React apps and the resulting starter files

• Styling with Tailwind CSS

• Functional components and JSX – the language of React

• Managing state with the useState hook and communicating with APIs using the
useEffect hook

• Exploring React Router and other goodies

Setting Up a React Workflow 90

By the end of the chapter, you will have created a minimal, yet fully functional React web app, and
you will become part of an army of frontend developers who value simple tools to be able to achieve
complex functionalities, without being confined within a strict framework.

Technical requirements
Starting a React project involves less setup, although the structure of the project will be more
complicated than the Python one, as you will soon be able to see. Creating a React-based application
used to involve several steps, such as setting up a build system, a transpiler, creating a directory
structure, and more. Fortunately for us, a script, which is conveniently called Create-React-App,
is there to do all the heavy lifting for us! The only requirement is to have a working and updated
Node.js installation on your local machine.

If you do not have Node.js on your machine, head over to https://nodejs.org/en/
download/, grab the version for your operating system, and then follow the instructions. I am
currently using version 14, but feel free to use a newer version. When installing, check all the boxes
– you want npm (Node.js’ package manager) and optional additional command-line tools if you are
on a Windows machine.

Since you already have Visual Studio Code installed (haven’t you?), this is a good moment to install
a great React extension called ES7+ React/Redux/React-Native snippets – it will allow you to speed
up the creation of components – the building blocks of a React app. Finally, if you are developing and
testing your apps in Google Chrome, there is a neat extension called React Developer Tools that will
enable you to debug your react apps quicker and spot potential problems easier.

Let’s Create (a) React App
As I mentioned earlier, create-react-app takes away much of the heavy work when starting
a project, and we will be using it throughout this book. However, bear in mind that there are other
ways to set up React; for instance, you can include it through a CDN just like plain old jQuery if you
want to go old-school!

Let’s create a simple app that we will be building upon in this introduction. Grab a folder, mine is
called chapter4, cd into it, and from your Terminal of choice type in the following:

npx create-react-app cars

Now watch the magic happen before your eyes! Npx is a tool that is included with the latest versions
of npm, and it allows us to run executable scripts without the need to install them on your machine.
Please allow the process to finish. This can take a while and the output might be cryptic, but eventually,
we will have a properly initiated React project ready to be developed.

https://nodejs.org/en/download/
https://nodejs.org/en/download/

Let’s Create (a) React App 91

The Terminal will inform you that you can run several commands, but at this point, we will follow the
suggestion and change the directory into the newly created cars directory (because that is what we
called our project when we ran create-react-app) and run the following command:

npm start

You will be greeted by a gray screen with a slowly rotating blue React logo. Success! However, behind
this dead-simple page, there is tons of code, and we can examine this generated code by looking inside
the cars folder that the good create-react-app robot (I always imagined it as a robot) built
for us.

The is a node_modules directory that, like in all Node.js projects, contains all the project
dependencies, and there are lots of them! You will not need to touch this folder except in extreme
debugging operations, so let’s move on to the next one. In the Public folder, there are a couple
of generic files that we will soon remove, such as the PNG logos and the favicon.ico file, but
there is also an extremely important HTML file – the index.html. This bare-bones file contains
a div, with the id of the root and this div is the place where React will put our whole application.

Moving on to the src directory, this is where we will be doing all of our work. The App.js file
that represents our entire application – all the components, menus, headers and footers, lists, and
controls – will be hosted on this file, which, in turn, will be rendered in our single div with the id of
the root in the HTML file. This monstrous complexity is necessary for the flexibility and capabilities
that React will be able to provide us while developing, in just a few more steps.

Since I will not delve much into the styling of our React apps in this book, I want to get it out of the way
as quickly as possible and in the easiest way possible in my opinion. React enables us to style applications
in a myriad of ways – you can use classic CSS style sheets or SASS, you can opt for JavaScript-style
objects, and there are very modern and weird but efficient solutions such as Styled Components.
Additionally, all of the major visual frameworks have a React version – Material UI, Bootstrap, and
Semantic UI – you name it. I will be using Tailwind CSS, which has an atypical approach that I like,
and I feel that it doesn’t get in the way too much. I found Tailwind CSS excellent for defining basic,
simple styles that make the page look simple and clean, while it is perfectly good for achieving pixel-
perfect designs from Figma or Adobe XD files if needed.

Tailwind CSS and Installation

Essentially, Tailwind CSS is a utility-first framework that translates CSS into a bunch of classes that
can be used directly in the markup and enable us to achieve complex designs. Just by adding classes
to our HTML elements, we will be able to create completely styled documents. Check it out on their
excellent website at https://tailwindcss.com/ and get acquainted with it, as we will be
using it for all our React-styling needs.

https://tailwindcss.com/

Setting Up a React Workflow 92

To install the Tailwind CSS framework in our cars project, we will follow the procedure from https://
tailwindcss.com/docs/guides/create-react-app. Follow these steps:

1. First, we need to install the packages using npm. Stop your server with Ctrl + C and run
the following:

npm install -D tailwindcss postcss autoprefixer

The preceding command installs Tailwind and two other dependencies as development
dependencies.

2. Next, we will automatically create the necessary config files with the following command:

npx tailwindcss init -p

3. Now, we need to tell Tailwind where to look for files. Open the tailwind.config.js
file and make sure it contains the following:

module.exports = {

 content: [

 "./src/**/*.{js,jsx,ts,tsx}",

],

 theme: {

 extend: {},

 },

 plugins: [],

}

4. Finally, edit the index.css file in your src folder, delete everything – the styles that powered
our rotating logo page – and just leave the following:

@tailwind base;

@tailwind components;

@tailwind utilities;

5. This is kind of embarrassing, but important. As it turns out, as of 2022, you need to run
the following:

npm install postcss@latest

This is in order to update the postcss package to its latest version and make Tailwind
work as expected. Do not forget to run npm start again – it will start our development
server, which reloads every time we save our changes!

https://tailwindcss.com/docs/guides/create-react-app
https://tailwindcss.com/docs/guides/create-react-app

JSX and the Components – the building blocks 93

6. Finally, edit the App.js file – clear everything and just leave the following:

function App() {

 return (

 <div className="App">

 <h1 className="bg-slate-500 text-white text-

 center">This is a Tailwind styled site!</h1>

 </div>

);

}

export default App;

Don’t worry about the weird className stuff – this is JSX, React’s language for creating HTML – but
take a look at the classes (they are classes, despite the naming). The first one tells Tailwind to apply a
background of slate-500 (it’s a color) and the text-white and text-center classes are
pretty self-explanatory. You will notice that Visual Studio Code does some nice autocompletion stuff
as soon as you type in the first quote. Phew! We have a basic React + Tailwind setup. Now let’s move
on and see whether it was worth it. If you want to practice Tailwind CSS a bit, try creating a full-height
page with some creepy dashed borders! Next, we will tackle the most fundamental parts of React: JSX.
This is the language that React uses to create the HTML and the components – the building blocks
that will eventually compose our application.

JSX and the Components – the building blocks
We might safely say that JSX is the glue that holds the whole React concept together. The smallest
building blocks of a React page or app are so-called React elements. A simple element might be
as follows:

const title = <h1>The Car Sales App</h1>

This is an interesting concept – it looks like an H1 HTML element, but it also definitely looks like
JavaScript, too. And you would be right – JSX enables us to create React elements that can be inserted
into React’s virtual DOM tree that is different from the actual HTML. React takes care of the tedious job
of updating the DOM to match the virtual DOM and compiles the JSX elements (through something
called Babel) into actual HTML elements. Why JSX, you wonder? Well, first, it is a full-fledged
programming language – JavaScript in all its glory and power. React elements are immutable – once
we create them, we cannot change them, and as the React site states, they are like single frames in a
movie. However, they can be replaced with new elements.

Setting Up a React Workflow 94

It is important to note that every React component, including our App file, which is currently the only
component that we have, must return one and only one element – a div or a fragment (essentially,
an empty tag, <>) and all the React elements enclosed in it. Let’s try and write some simple elements
and modify our App.js file to look like this:

function App() {

 let data = ["Fiat", "Peugeot","Ford","Renault","Citroen"]

 return (

 <div className="App max-w-3xl mx-auto h-full">

 <h1 className="bg-slate-500 text-white text-center

 ">This is a Tailwind styled site!</h1>

 <div>

 {data.map(

 (el)=>{

 return <div>Cars listed as <span className=

 "font-bold">{el.toUpperCase()}</div>

 }

)}

 </div>

 </div>

);

}

export default App;

Our simple page should look like the following:

Figure 4.1 – Our nearly blank Tailwind CSS – the React page

Let’s take a look at what we just did, or better yet, what JSX was able to provide us. First, we have
declared some data – a simple list of car brands in an array. For now, we will pretend that we got this
data from an external API. After all, it’s all JavaScript. Then, in the return statement, we were able
to map over this array using the JavaScript map function – we called the elements of the el array.
Finally, we return these elements – in this case, they are strings, and we wrap them in template literals

JSX and the Components – the building blocks 95

(another ES6 feature) and, just to be fancy, transform them to uppercase. The whole function returns
exactly one div element. Since class is a reserved name in JavaScript, React uses the className
keyword, and we can see that we used it quite a bit since Tailwind is very verbose.

Finally, let’s add a little something to our App.js file, so React doesn’t complain in the console.
Change the return statement by adding a key property:

return <div key={el}>Cars listed as <span className="font-
bold">{el.toUpperCase()}</div>

The key is a unique identifier that React needs anytime it creates arrays of DOM elements, so it knows
which one to replace, keep, or remove. This is a rather simplistic example, but it shows the basics of
the power of React’s handwriting – JSX. The important thing to remember is that we have to return
exactly one element – be it a div element, a title, or a React fragment.

To sum it up, and for those of you who might be coming from a different UI framework or library
(such as Vue.js, Svelte, or Angular), React does not have a proper templating language with a dedicated
syntax for looping over arrays of objects or if-else constructs. Instead, you can rely on the full
power of JavaScript and use the standard language features such as map for iterating through arrays,
filter for filtering data, ternary operators for if-else constructs, template literals for string
interpolations, and more. Coming from classical templating languages such as Jinja2 and Handlebars,
I must admit it can take some time to adjust. But after a while, it becomes very natural, and you don’t
really have to think much about rules and what can and cannot be done (almost anything can!).

Now we will speak about arguably React’s most important feature – components.

Components

The whole idea or paradigm of modern web development (we’re talking 2020s modern) is built around
the concept of breaking complex UIs into smaller, more manageable units – components. In React
since its beginning, components could be created by extending a JavaScript component class, using the
render method, and defining functions. With the introduction of hooks, which are special functions
that allow us to interact with the state and life cycle of the components directly, React development
became much more flexible and concise – at least in my humble opinion. But let’s talk about components.

Components are reusable pieces of the UI, and we can think of them as functions returning JSX – pieces
or units of UI. One of the first stages of planning the development of a react site is the identification
of areas, that is, pieces that could be abstracted into components and reused in some way or, at the
very least, abstracted into separate units.

Let’s try to create a minimal component for displaying the header on a page. The component should
have an easy task: just to display the header, in our case, the title of the page, and maybe some simple
navigation links.

Setting Up a React Workflow 96

Functional components in React.js are defined as files with .jsx or .js extensions, and like our
App.js file (which is also a component – the root component), they must return a single JSX
element. The filenames should be capitalized. This is a great moment in which to use our previously
installed React extension for Visual Studio Code as it provides useful snippets for creating standard
components. Follow these steps:

1. Let’s create a folder called components in our src folder along with a new file called Header.
js in it.

2. Now, open the newly created file and type in rafce. The editor should suggest something
cryptically to you, called reactArrowFunctionExportComponent.

3. Select it and you will see your file filled with a typical ES6 arrow function component exported:

const Header = () => {

 return (

 <div>Header</div>

)

}

export default Header

This file defines a single JSX topmost element – called Header – and exports it at the
bottom.

4. Let’s make some edits to this file, making use of our Tailwind CSS framework classes: we will
make a div element on the left-hand side containing the title and a couple of links on the
right-hand side. At this point, we will not worry about responsiveness or fancy coloring. I just
want to create some contrast so that we can see what we have made:

const Header = () => {

 return (

 <div className="flex flex-row bg-orange-600 text-

 white align-middle justify-center p-5">

 <h1>Cars Sales App</h1>

 </div>

)

}

export default Header

JSX and the Components – the building blocks 97

5. After these edits, which we will explain in a bit and which are purely Tailwind-related, go
ahead and import the first component to our App.js file. Imports are handled in terms of
the relative path – just remember that the dot denotes the current directory of the file (src,
in our case), while /components is the folder in which we are keeping our components.
The App.js file should now look like this:

import Header from "./components/Header";

function App() {

 let data = [

 {brand:"Fiat", color:"green", model:"500L",

 price:7000, "year":2020,"id":1},

 {brand:"Peugeot", color:"red", model:"5008",

 price:8000, "year":2018,"id":2},

 {brand:"Volkswagen", color:"white", model:"Golf

 7", price:8500, "year":2019,"id":3},

 {brand:"Fiat", color:"green", model:"Tipo",

 price:10000, "year":2019,"id":4},

 {brand:"Kia", color:"black", model:"Ceed",

 price:6000, "year":2010,"id":5},

 {brand:"Volkswagen", color:"white", model:"Golf

 7", price:8500, "year":2019,"id":15},

 {brand:"Fiat", color:"gray", model:"Ritmo",

 price:300, "year":1990,"id":21}

]

 return (

 <div className="App max-w-3xl mx-auto h-full">

 <Header/>

 <div>

 {data.map(

 (el)=>{

 return (

 <div key={el.id}>

 {el.brand.toUpperCase()}

 </div>

)

 }

Setting Up a React Workflow 98

)}

 </div>

 </div>

);

}

export default App;

If you reload our app… I’m just kidding, React should be doing that job for you if you
haven’t stopped the npm run start process. You will see that our simple web page now
has a simple header component. It is an H1 element and has some basic formatting – it is
orange and centered. We imported the component as a self-closing tag.

So, you just made your first, very simple, React functional component. In this way, we can break
down the functionality of our entire website: we can add a footer, maybe some navigation, and more.
In fact, the process of breaking an app down into components and deciding what should constitute
a single component is so important that the React documentation has an excellent page dedicated to
the process: https://reactjs.org/docs/thinking-in-react.html.

In the following diagram, you can see a simple example of breaking an application user interface into
separate components. Each rectangle represents an independent component that is imported into the
main app component. Some might be repeated several times, while others – such as the header and
the footer – might be present with only one instance:

Figure 4.2 – Breaking an app into components

https://reactjs.org/docs/thinking-in-react.html

JSX and the Components – the building blocks 99

Crafting components like this is nice and quick, but it can become boring if the output is… fixed,
so to speak. Fortunately, React components are functions, and functions can take arguments, and
usually, they are able to do something useful with those arguments. Let’s say that we want to create
a component that will replace our rather ugly-looking list of car brands and display the information
in a more eye-pleasing and informative way. We can then pass the data for each car in our data array
(an object) and have it formatted the way we want.

Let’s redo our procedure for building components. Follow these steps:

1. Create a new file in the components folder, name it Card.js, and type rafce in order
to get the VSC extension to fire. You will then see something like this:

const Card = () => {

 return (

 <div>Card</div>

)

}

export default Card

2. Now, let us import the Card component into our App.js file in the same way as we did
with the Header:

import Header from "./components/Header";

import Card from "./components/Card";

function App() {

 let data = [

]

 return (

 <div className="App max-w-3xl mx-auto h-full">

 <Header/>

 <div>

 {data.map(

 (el)=>{

 return (

 <Card key={el.id} car = {el} />

)

 }

Setting Up a React Workflow 100

)}

 </div>

 </div>

);

}

export default App;

Now, instead of returning the divs when mapping through our data – we are returning our
Card component and passing it the key (that is, the ID of the car object; note that it just
has to be unique or React will yell at us!). Additionally, we are passing it something that we
called car and set to the element – the car object.

If you take a look at our page, you will not be impressed – it’s just a bunch of Tailwind-bland
Card texts. However, we did achieve something – we passed data through props (short for
properties) to each Card. We just have to “accept” it in the component.

3. Let’s call this function argument props and log it to the console. In the Card.js file, modify
the first two lines:

const Card = (props) => {

 console.log(props)

 return (

 <div>Card</div>

)

}

export default Card

The app will not change, but if you take a look at the console output in Google Chrome, you
will see that we are getting back all of the car objects inside our Card components.

4. Now we can go on and populate the Card with the data:

const Card = (props) => {

 return (

 <div>

 {props.car.brand}

 {props.car.model}

 {props.car.year}

 {props.car.price}

 {props.car.color}

 </div>

JSX and the Components – the building blocks 101

)

}

export default Card

We’ve got something that will not win any design awards but will get all of our data back into
the component.

5. Now you can get creative: dive into some Tailwind CSS documentation and come up with a
card style that you like. I am going to make something really simple, and I am going to get rid
of this props.car repetition by using some JavaScript ES6 destructuring:

const Card = ({car}) => {

 let {brand, price, model, year, color} = car

 return (

 <div className="shadow-md p-5 flex flex-col">

 <div className="font-extrabold text-center

 border-b-2">{brand} {model}</div>

 <div>Year: {year}</div>

 <div>Price: <span className="font-semibold

 text- orange-600">{price}</div>

 <div>Color: {color}</div>

 </div>

)

}

export default Card

In the App.js file, I have just added a couple of classes to the wrapper div: grid grid-
cols-3 my-3 gap-3. Once you get the hang of Tailwind CSS, you will be able to
read them very easily. We make the div to a grid with three columns, and we add some
y-padding and a grid-gap.

We have seen how easy it is to pass props to components, and once we can do that, the sky is the
limit! Well, not quite. Props provide one-way communication, but in the majority of apps, you will
have to deal with the state.

I will not delve into some of the very technical definitions of state. Since React’s job is to keep the UI
in sync with the current situation of our app, we can stick to a more descriptive definition.

Setting Up a React Workflow 102

A state can be thought of as a set of data that represents the user interface (UI) at any given moment.
In our case, the state could be a set of selected cars, which we would like to inquire about and save
them for later by giving them stars or some follow icon. Forms can have different states depending
on the types of inputs: text fields can be empty (waiting to be filled) or populated, checkboxes can
be checked, or unchecked, and drop-down menus can be selected or not. You get the idea. The state
is such an important topic in React (and, to be honest, in other UI frameworks and libraries) that
entire books and conferences are dedicated to it. In this chapter, we will barely scratch the surface of
how React Hooks help us to define and maintain state throughout our component’s life cycle, that is,
while the component is alive.

In the early days of yore, you had to create React components by extending the JavaScript classes and
maintain the state through a series of this calls that made working with the state a bit verbose and
cumbersome. With the introduction of React Hooks, we have at our disposal several easy mechanisms
for dealing with the state, from very simple ones to more complex ones. In the next section, we are
going to take a look at a couple of React Hooks and learn how they can help us to write concise and
maintainable code.

React Hooks, events, and state
A great definition of React or its components is that it is, essentially, a function that converts a state
to a user interface – a React component is literally a function, as we have seen, and it takes props as
arguments. The output of the function (the component, really!) is a JSX element. Essentially, React
hooks are functional constructs that enable us to tap into the life cycle of a component and mess with
its state.

Creating stateful variables with useState

The first, and probably the most fundamental hook, is the useState hook, which enables us to
maintain a certain state throughout our component. Let’s say that we want to maintain some kind
of state in our one-page app – we want to set a budget limit and how much money we are willing to
spend, so the website doesn’t try to lure us into even looking at those cars that are just too expensive.
We will make a simple textbox, set it to display just numeric values, and hook it up with a state variable
that we will aptly name budget. I have made quite a few changes to the App.js file, but we will
go over it line by line:

import Header from "./components/Header";

import Card from "./components/Card";

import {useState} from ‘react’

function App() {

 let data = []

 let [budget, setBudget] = useState(4000)

React Hooks, events, and state 103

 const onChangeHandler = (event)=>{

 setBudget(event.target.value)

 }

 return (

 <div className="App max-w-3xl mx-auto h-full">

 <Header/>

 <div className="border-2 border-yellow-500 my-5 p-

 3">Your current budget is:

 {budget}</div>

 <div className="grid grid-cols-3 my-3 gap-3">

 {data.map(

 (el)=>{

 return (

 <Card key={el.id} car = {el} />

)

 }

)}

 </div>

 <div className="bg-gray-300 rounded-md p-3">

 <label htmlFor="budget">Budget:</label>

 <input type="number" onChange={onChangeHandler}

 id="budget" name="budget" min="300" max="10000"

 step="100" value={budget}></input>

 </div>

 </div>

);

}

export default App;

Let’s see what we did here. First, we imported the useState hook from React. The useState
hook, probably the simplest of them all, returns two values – a variable (which can be anything we
want – an array or an object) and a function that sets the value for this state variable. Although you
can use any legal JavaScript name, it is a good convention to use the name of the variable – in our case,
budget – and the same name, prepended with set: setBudget. That’s all there is to it! With this
simple line of code, we have told React to set up a state unit called budget and to set up a setter. The
argument of the useState() call is the initial value. In our case, we have set it to be 4,000 Euros:

Setting Up a React Workflow 104

Figure 4.3 – Our minimal React Tailwind page

Now we are free to use this state variable across the page. Note that we placed the useState
call inside the App functional component – if you try to place it elsewhere, it will not work: hooks
tap into the life cycle of components from the inside of the bodies of the functions defining the
components themselves.

Moving down to the bottom of the component, we can see that we added a simple textbox. We set it
to only display numeric values with HTML, and we added an onchange handler.

This is a good moment to mention that React uses the so-called SyntheticEvent – a wrapper
around the browser’s native events that enables React to achieve cross-browser compatibility. The
documentation is very straightforward, and you can find it on the React website: https://
reactjs.org/docs/events.html. Once you have remembered a couple of differences (the
events are using camelCase, rather than lowercase, and you must pass them a function in JSX), you
will be writing event handlers in no time.

Back to our App.js file. We added an onChange event to the textbox and set it to be handled by
a function – we called it onChangeHandler.

This onChangeHandler could hardly get any simpler: it just takes the current value of the textbox
(target.value, just like the original DOM events; remember, it’s just a wrapper) and sets our
budget state to this value using our useState call defined just above the function. Finally, we
added a div element just below the Header component that uses this budget value and displays
it. That’s it – we added a state variable to our app – the root component. We can set it and get it, and
we are displaying it on the page!

https://reactjs.org/docs/events.html
https://reactjs.org/docs/events.html

Communicate with APIs using useEffect 105

Now let us try another thing. We have the user entering their budget and displaying it on the page.
Wouldn’t it be nice if we could somehow differentiate between cars that fit said budget and those that
do not? To get this to work, we will need to set our small data sample that is currently hardcoded to
be a state variable itself, and then we could just filter it and display only those within our price range.

I will not go through the code for this, but you can find it in this book’s GitHub repository. The
procedure would be to set a new state variable that holds an array of cars satisfying the condition
that their price is less than or equal to our budget (hint: JavaScript filtering arrays) and then just add
setDisplayedCars to the budget event handler.

At this point, I must encourage you to dive into the excellent React.js documentation and learn more
about the useState hook and its big brother, the useReducer hook. This is a hook that might
be thought of as a generalization of the useState hook and that is best suited when you have to
deal with numerous pieces of state that are interconnected, so managing them with many simple
useState hooks could end up being tedious and difficult to maintain.

Now I am going to delete the contents of our App.js file, leaving only the empty Tailwind-styled
canvas and the header:

import Header from "./components/Header";

function App() {

 return (

 <div className="App max-w-3xl mx-auto h-full">

 <Header/>

 </div>

);

}

export default App;

You have seen how the useState hook enables you to add a stateful variable in a very simple
and straightforward way and how to manipulate the state through regular events.

Now it is time to see how we can get our data from our efficient FastAPI backend into our beautiful
React.js frontend. We will get to know another hook: useEffect.

Communicate with APIs using useEffect
We have already seen how React and its components transform the state and the data into a user
interface. We will do all the fun stuff of connecting our MongoDB layer to FastAPI and then powering
a React frontend in the following chapter. Here, we will use a free mock rest API. However, we do need
to address the problem of accessing external data and the management of external events in general.
“External” with regards to what, you might wonder?

Setting Up a React Workflow 106

Well, we have seen that React and its mighty hooks are centered around the task of synchronizing
the UI to the state and the data. Components can contain other components, and together, they form
what is known as a component tree, which is then constantly compared to the current state. React
does all of this coordination work – what should be rendered, updated, and more.

Events that are outside the flow of the React data flow process are called side effects. Some side effects
might be setting or getting data values in local storage or session storage (maybe we want to save the
data of logged-in users’ until the next session), measuring the dimensions of some DOM element (for
instance, we want to display different layouts for different browser sizes), and most notably, getting or
fetching data from an external system, maybe in the form of a REST API call.

When working with React, one thing to always bear in mind is that it works in a continuous data
flow, with an underlying system constantly scanning for updates and ready to re-render components
that it deems in need of an update. We will illustrate this with a simple example. We are working on
our Cars Sales application, and we need to list all the users that were kind (and smart enough!) and
registered an account.

The task at hand is a simple and common one. We have a dedicated page – it will probably live in
a URL called /users or something similar, and it should be populated with the data (think of a
JavaScript array of objects) from an external API. This API will be powered by FastAPI, but for now,
we will use a readymade mock solution called Regres.

The GET call we need to make should be directed toward the URL, https://reqres.in/
api/users.

We already understand how to make components, provide them props, and set their state, so that
shouldn’t be a problem. But what are we going to do about loading data from an external API? We’ll
just use something such as Fetch or Axios, right? Like we were using a normal plain JavaScript app.
Let’s give it a try:

1. Modify the App.js in a way that includes a standard fetch call to the API, including the
json method to get the data to a console:

import Header from "./components/Header";

function App() {

 fetch('https://reqres.in/api/users')

 .then(response=>response.json())

 .then(json=>console.log(json))

 return (

 <div className="App max-w-3xl mx-auto h-full">

 <Header/>

 </div>

https://reqres.in/api/users
https://reqres.in/api/users

Communicate with APIs using useEffect 107

);

}

export default App;

Our app will continue to be blank with an orange header, but if you take a look at the
console in Chrome, you will see that we are actually getting our users back, six of them. So,
we just need to put them in a state variable, and we should be good to go, right?

2. Let’s add a state variable and a corresponding set method by using our old friend, the useState
hook (warning: the following code is wrong, and it will bomb your browser and, potentially,
get you into trouble with your API provider!):

import {useState} from 'react'

import Header from "./components/Header";

function App() {

 let [users, setUsers] = useState([])

 fetch('https://reqres.in/api/users')

 .then(response=>response.json())

 .then(json=>setUsers(json['data']))

 return (

 <div className="App max-w-3xl mx-auto h-full">

 <Header/>

 {users.map(

 (el)=>{

 return (

 {el.email}

)

 }

)}

 </div>

);

}

export default App;

The preceding code just won’t run, or it will run but not in the way that you might expect.
If you manage to open the developer’s console in Chrome, you will see that the page is
constantly making requests to our poor API server, flooding it in the process. Why is that?

Setting Up a React Workflow 108

I found this problem very illustrative of the way React works, and once you get the hang of
it, it will begin to make sense. The problem is located at the top of the App function. We
declared a state variable with useState, and then we naively proceeded to set its value
after a fetch call to our external API. After firing the setUsers method, React noticed
that there is a change of a state variable, so a re-render is in order. Then, React just calls the
function again, re-encounters the fetch call, sets the value of a state variable, and… you get
it. We are in an infinite loop.

The useEffect hook is meant for cases like this – interacting with the world outside of
our React app in a safe and controlled way.

3. The syntax of the hook is quite simple, import it directly from React, and then call it inside our
component with the following form:

 useEffect(()=>{

 console.log("This just happened!")

 },[])

Note that useEffect takes in two arguments – the first is a function that will execute
after every render, and the second one is an array of dependencies in which we list all the
values that we want to monitor for a change. If any of these values change, the function
declared as the first argument will run (again).

4. Armed with this knowledge, we can turn to our App component and try something like this:

import {useState, useEffect} from 'react'

import Header from "./components/Header";

function App() {

 let [users, setUsers] = useState([])

 useEffect(()=>{

 fetch('https://reqres.in/api/users')

 .then(response=>response.json())

 .then(json=>setUsers(json['data']))

 },[])

 return (

 <div className="App max-w-3xl mx-auto h-full">

 <Header/>

 {users.map(

 (el)=>{

 return (

 <li key={el.id}>{el.email}

)

Communicate with APIs using useEffect 109

 }

)}

 </div>

);

}

export default App;

Like some kind of magic, the page seems to display our data just the way we wanted it – a list
of user emails, for a total of six (our API will not give us more than that, but it is more than
enough for our purposes). Add after this:

You might be wondering why we passed an empty array to our useEffect function.
Simply put, this array - also known as a dependency array - allows us to control when
the useEffect will fire. In our case, we provided an empty dependency array so the
useEffect hook function will fire off only once, after the initial render. If we provided a
state variable, controlled via a useState hook to the array, useEffect would fire every
time that provided state variable changed.

The React documentation on the subject is a very useful read: https://reactjs.org/
docs/hooks-reference.html#conditionally-firing-an-effect

Now, since we want to showcase our dependency array, we can make use of the fact that
our REST API of choice offers us two pages of users: https://reqres.in/api/
users?page=2.

5. We can make another state variable, an integer, to monitor the page we are currently viewing,
and we can make a simple button with a state handler. The handler function will make use of
ES6’s ternary operator – if the state is equal to 1 set it to 0 and vice versa:

Figure 4.4 – Displaying users from an external API

https://reactjs.org/docs/hooks-reference.html#conditionally-firing-an-effect
https://reactjs.org/docs/hooks-reference.html#conditionally-firing-an-effect
https://reqres.in/api/users?page=2
https://reqres.in/api/users?page=2

Setting Up a React Workflow 110

The code for adding the toggle – logic is straightforward:

import Header from "./components/Header";

import {useState, useEffect} from 'react'

function App() {

 let [users, setUsers] = useState([])

 let [page, setPage] = useState(1)

 useEffect(()=>{

 fetch(`https://reqres.in/api/users?page=${page}`)

 .then(response=>response.json())

 .then(json=>setUsers(json['data']))

 },[page])

 return (

 <div className="App max-w-3xl mx-auto h-full">

 <Header/>

 <button className="border border-gray-500 rounded-md

 p-2 m-5" onClick={()=>{page===1?setPage(2):

 setPage(1)}}>Toggle users</button>

 {users&&users.map(el=>{

 return (

 <li key={el.id}>{el.email}

)

 })}

 </div>

);

}

export default App;

We also made sure to short-circuit the users’ array variable and the JSX mapping logic, and added the
page variable to the useEffect function’s dependency array – this way the function will execute
every time there is a page number change, or toggle.

Note that in the book’s repository this application is separated and called Users, in order to preserve
all the code form both apps.

Exploring React Router and other goodies 111

Finally, useEffect only fires when the contents of the dependency array change, and in our case,
that is the page variable. Now, clicking on the button fetches us the first or second page of the users,
and no API calls are made in between, except for the initial fetch that follows immediately after the
first component render.

Like with useState, there are much more subtleties involved. For example, we can provide a
cleanup function at the bottom of the useEffect body to make sure that any long-lasting effects
are removed and so on, but this should give you a basic idea of how to handle actions that reach out
to an external API.

There are several other hooks that you will want to use in your projects – the useMemo hook for
memoizing values of a function helps us to avoid unnecessary repeated costly function calls. Additionally,
useContext allows React to cover an entire area of components and pass values directly without
having to pass them through several components that might not actually need it (prop drilling). We
can even create our own hooks and abstract functionality that can be reused in several places of the
app, ensuring better maintainability and less repetition. In the upcoming chapters, we will use a couple
of hooks in order to achieve the desired functionality elegantly and simply.

In conclusion, a personal note – I tried to learn React while there were no hooks around, and I must
be honest, I did not like it. The state management with class components and life cycle methods just
did not sit well with me, and I admit that, probably, my background and lack of classical Computer
Science training played a role in that. With the entrance of hooks, the whole ecosystem just became
much clearer and cleaner, and the mapping of business logic to UIs is much more streamlined and,
well, logical. I can only suggest that you take some time and dive into the hooks system, it will be
worth it, I promise!

You now have the knowledge that is necessary to set and get states in your components or apps and
to communicate with external API services in a predictable and controllable way, while crafting clean
and simple code. Just using React and its hooks can give you web developer superpowers, but there is a
whole world of packages and modules built around React that is just as important as the core libraries.

Exploring React Router and other goodies
So far, we have only created a couple of single-page apps that are really single pages – we haven’t touched
some advanced functionalities, and they do not even qualify as apps. However, single-page apps are
not limited to a single URL – if you navigate to your Gmail account, you will see that the URL does, in
fact, change with every action that you might take. While there are several solutions that enable us to
achieve routing in Single-Page Applications (SPAs), React Router is the de facto standard solution,
and it is a well-tested, mature package that has recently had a major update (version 6).

Setting Up a React Workflow 112

The underlying idea of a frontend page router is that it enables us to render different components on
the same page depending on the route that is loaded. For instance, the /about route would cause the
app to load a component called About.js in the main App component, removing other, previously
loaded components and so on. In its latest version, React Router has made some breaking changes, but
the logic is unaltered. The package provides us with a basic structure – BrowserRouter – which
is used to wrap our entire root App component. We will create a basic router for our cars application
in the next chapter, but here, I just want to convey the idea and the principles that lie underneath.

React itself is so popular and omnipresent that it has created an impressive ecosystem around itself. I
have already mentioned that, besides Tailwind, you can use virtually any UI or CSS framework either
directly or through some optimized React version, such as Bootstrap, or more reacty such as Ant
design. We can enhance our user experience with subtle animations through React Motion, and we
can speed up the development of forms with some excellent form libraries such as Formik or React
Hook Form. For complex state problems, Redux is the most popular and widely adopted industry
standard, but there are many smaller or specialized libraries for local and global state management.

In this book, in our cars application, we will make a couple of charts, and we will see why data visualization
specialists are turning to React. For instance, the combination of React Hooks and D3.js enables us
to make virtually everything achievable with D3.js (and that’s a lot), while making data management
easier through React. Bear in mind that we have barely scratched the surface of what is possible to
achieve with React, and this chapter is really meant just to get you started and whet your appetite.

Summary
We made it through a short and atypical introduction to the world’s most popular user interface library
– React.js. I tried to cover the absolute basics and point the reader in a certain direction, rather than
trying to elaborate on topics that require separate chapters or entire books. I have covered the topics
that I believe are enough to get started.

We have seen what JSX is and why it is so convenient for developers. We introduced the basic building
blocks of React, functional components, and the basic rules that must be followed when designing them.
I have introduced two fundamental React Hooks that, when combined, allow you to begin building
basic user interfaces, maintain and change state in the components and interact with external APIs.

Finally, I mentioned some of the React libraries that will make your life easier when developing
custom applications – they all have excellent documentation and are updated frequently, so covering
them in depth would defy the purpose of this chapter.

In the next chapter, we will use some of this basic knowledge and use React to create a simple but fully
functional and dynamic for our application.

Part 2 – Parts of the Stack
Working Together

In this part, we start building a simple, yet realistic full-stack application and explore the JWT
authentication flow with the FARM stack.

This part includes the following chapters:

• Chapter 5, Building the Backend for Our Application

• Chapter 6, Building the Frontend of the Application

• Chapter 7, Authentication and Authorization

5
B u i l d i n g t h e B a c k e n d f o r

O u r A p p l i c a t i o n

In the previous chapter, you learned just enough React to be able to think in components and JSX and
to express your UI interactivity in terms of Hooks and handlers. It is time to put this new creativity
to good use and build something!

In this chapter, we will take a simple yet concrete application specification and try to create a simple
backend. We will do the following:

• Connect to an instance of MongoDB and learn about Python drivers

• Connect asynchronously to our database

• Create Pydantic models for our data

• Make a more manageable application structure with APIRouter

• Define path operations for our CRUD functionality

• Introduce FastAPI middleware and use it to enable our backend to connect to our frontend

• Deploy our backend to Heroku – a platform-as-a-service

In this chapter, we will cover the following main topics:

• Introducing our app

• Creating a MongoDB instance for our app

• Creating our FastAPI backend

• Deployment to Heroku

Building the Backend for Our Application116

The goal of this chapter is to build a complete FastAPI backend with CRUD functionality. It will
be a very simple application with a very basic data model, and in this phase, there will be no users
defined – just pure and simple create, read, update, and delete operations on a set of entities: cars. By
the end of the chapter, you should have a solid foundation for the process of backend development,
with MongoDB as the database layer and FastAPI as the framework of choice, and be able to apply a
similar process to any data that you might wish to model and serve through a modern API.

Technical requirements
The technical requirements for this chapter are identical to those in Chapter 3, Getting Started with
FastAPI – we will create a brand-new Python environment and install all of our dependencies in it. In
addition, you should already have a MongoDB (free) account and a cluster – you can refer to Chapter
2, Setting Up the Document Store with MongoDB for the detailed procedure of setting up the account,
the credentials needed for connecting to the instance of the database, and the connection of Compass
(the MongoDB desktop client). If you prefer, you could also use a local MongoDB instance – just
replace the connection string (database URL, database name, and collection name) with the ones on
your local MongoDB installation.

You should be able to run all the code from this chapter on a relatively modest machine (with at
least 8 GB of RAM, but, hey, the more the merrier!) and you should have a relatively recent Python
version (at least 3.6).

Introducing our app
It is time to put all of our knowledge to work and create our first FARM stack app! Our employer,
a company that sells used cars, has decided to create an application that will be used internally for
the management of car ads. The specification at this point is quite simple – the app should be able
to store and provide data about the cars (brand, make, year of production, kilometers, and so on)
and offer basic CRUD functionality. The user interface should be simple so that employees can get
working right away – cars are inserted into the database, they can be listed, the price can be updated,
and they can be deleted.

I am going to start with the database layer – we will begin by working on an Atlas MongoDB instance
right away since we need to be able to create fast deployments of the app and obtain fast and frequent
feedback from the stakeholders – the car sales company owner (although, in this case, that shouldn’t
be an issue, right?). After creating a database (I have already created an online account in Chapter
2, Setting Up the Document Store with MongoDB), we will work on the FastAPI backend: I will show
you how we can break our app into routes with the FastAPI router and handle multiple groups of
URLs – for now, just for car instances. After crafting the pydantic models for cars, we will create the
routes for all of the basic operations: creating cars, updating them, deleting them, and reading them,
all together or individually. Finally, in the following chapter, I am going to create a very simple React-
based user interface for displaying and managing cars, and I will be using Tailwind CSS since it gives
me a type of designer’s flexibility that other frameworks struggle to provide.

Creating a MongoDB instance for our app 117

A note to everyone who has had to start from such a simple specification – this is often what the
stakeholder thinks will be needed, but it is almost always not the product that they will end up with.
I have deliberately made this initial specification oversimplified to simulate how, in my experience,
80% of projects without a proper and dedicated web development department begin.

After having defined our brief app specification, it is time to dive into the fun stuff: let’s begin by setting
up the database layer and building our data models and the API!

Creating a MongoDB instance for our app
We have already seen how to start with the MongoDB setup in Chapter 2, Setting Up the Document Store
with MongoDB. Now, I will just say that we need to create a new database – I will call mine carsApp
– and, inside of it, a collection, which I will aptly name cars1. I assume that you have followed the
procedure outlined in Chapter 2, Setting Up the Document Store with MongoDB, you have defined a
database user with a username and password, and you have allowed all possible IP addresses to connect
to it. This is not the most secure way of working with MongoDB, nor is it recommended, but for our
purposes it will simplify the workflow. The next step is getting our connection string information
and keeping it somewhere safe. For now, I will keep them in a handy text file in the following format:

DB_URL = "mongodb+srv://<dbName>:<dbPassword>@cluster0.fkm24.
mongodb.net/?retryWrites=true&w=majority"

DB_NAME = "carsApp"

COLLECTION_NAME = "cars1"

Later on, we will make sure to import these constants, as well as other API keys for authentication or
external services in the format of environment variables, and be careful not to commit them to our
GitHub repositories, as we do not want to allow the world to use our accounts. I will show later how
various platforms such as Netlify, Vercel, Heroku, and Deta handle these keys, but for now let’s just
keep them in a plain text file, out of reach of the version control system. This is all we need for now,
and later on, I will connect MongoDB Compass for a direct view of our data.

Once our database is ready and we have all the data needed to make connections, it is time to begin
crafting our backend – the brain of our application.

Creating our FastAPI backend
I will now begin with the creation of the FastAPI-powered backend. I like to start with a folder that
bears the project name, so in this case, I will go with Ch5, as in Chapter 5 , Building the Backend for
Our Application. A more natural name would be CarsApp or something similar. Next, I am going
to create a folder inside called backend and create a fresh Python environment inside of it. These are
the steps:

1. Create a folder named Ch5, or name it whatever you please.

Building the Backend for Our Application118

2. cd into it and create a folder named backend.

3. cd into the /backend folder and create a Python environment with the following command:

python -m venv venv

4. The command will create a folder called venv. Activate the environment by typing the
following command:

venv\Scripts\activate.bat

5. The Python environment should be now activated – you should have your command prompt
prepended with venv. Now, it is time to install our Python dependencies. While in the same
activated environment, issue the following:

pip install fastapi motor dnspython pydantic uvicorn

We now should have a pristine Python environment and we can begin creating our backend.
If you are wondering what motor and dnspython are, the former is our asynchronous
MongoDB driver for Python, while the latter is a package needed for Python to be able to
resolve the DNS of our MongoDB and point the driver and the whole application to the
correct instance of MongoDB.

I like to begin with a bottom-up approach, or back to front, if you will. That essentially means that I
like to have all of my data types and data flows defined upfront, modeled into the database, and with
validation rules implemented. The model in our case is very simple – we have only cars as our entities
and I will deliberately use a very limited subset of car features. It might seem silly but predicting the
prices of used cars, with all their features, such as engine type, kilometers, vehicle type, safety standards,
country of origin, and many more, is an interesting topic in its own right and several very interesting
scientific papers have been published with various machine learning models and techniques proposed.
I repeat, here and now, we are only going to use the following features:

• Brand – the car brand (Fiat, Opel, BMW), a string

• Make – or model (Meriva, C5, Laguna), also a string

• Year – the year of production (like 2015), an integer

• Cm3 – the engine displacement, proportional to the power of the engine, integers in the
range of 1,000-4,000

• Km – the mileage of the car, expressed in Km, integer in the range of a couple of
hundred thousand

• Price – the price of the car in euros, an integer, usually in the range of 1,000-10,000

Creating our FastAPI backend 119

Besides these features, there could be at least 20 or so more, while other data related to the management
app could and probably should include a couple of date/time fields (when the car was listed, when it
was sold), some Booleans (sold or not, displayed or not, and so on), maybe a location, some relations…
But I repeat, we are only given the task of building the simplest possible CRUD application and, for now,
we will stick with this. So, let’s create our pydantic models.

Creating the Pydantic models and the problem of ObjectId

While the fields are simple and we are not going to perform some fine-tuned validation, you will
immediately face a problem that should be tackled upfront. We have seen that MongoDB uses
something called ObjectId, assigns every document a property _id, and stores documents as
BSON (binary JSON). FastAPI, or Python really, encodes and decodes data as JSON strings and that
is also what will be expected in our frontend. As I have seen, there are basically two possibilities: to
preserve the ObjectId field in MongoDB or to transform it into a string representation that
will ensure uniqueness. While both options are viable, I will opt for the latter as it is simpler to set up
and it will require us to write less code for serializing objects. See the example here:

from bson import ObjectId

class PyObjectId(ObjectId):

 @classmethod

 def __get_validators__(cls):

 yield cls.validate

 @classmethod

 def validate(cls, v):

 if not ObjectId.is_valid(v):

 raise ValueError("Invalid objectid")

 return ObjectId(v)

 @classmethod

 def __modify_schema__(cls, field_schema):

 field_schema.update(type="string")

The preceding code basically just defines our own implementation of ObjectId functionality,
along with some validation and the update of the schema in order to output strings. Now, we
just have to extend Pydantic’s BaseModel with the PyObjectId that we just created and use it
as the basis for all of our models:

class MongoBaseModel(BaseModel):

 id: PyObjectId = Field(default_factory=PyObjectId, alias="_

 id")

 class Config:

 json_encoders = {ObjectId: str}

Building the Backend for Our Application120

It is important to note that we have used the alias option in order to be able to use the field in our
Pydantic model. Having our version of the BaseModel (called MongoBaseModel) ready, we
can now proceed and define our other fields:

class CarBase(MongoBaseModel):

 brand: str = Field(..., min_length=3)

 make: str = Field(..., min_length=3)

 year: int = Field(...)

 price: int = Field(...)

 km: int = Field(...)

 cm3: int = Field(...)

While we’re at it, let’s define the model for our update route – we want to be able to provide just a single
field and update only that field in the model. We have seen how pydantic manages to achieve this:

class CarUpdate(MongoBaseModel):

 price: Optional[int] = None

class CarDB(CarBase):

 pass

As you can see, all the fields are optional and set to None by default, while the CarDB model for now
just mimics the CarBase model – we made it just to be consistent with the convention of having
a model that represents the instance in the database. In this case, they just happen to be identical,
but they will not always be. The final ingredient of our model will, however, reside elsewhere – in
the API functions. Since we have decided to treat our IDs as strings, we need a way to serialize
them – enter jsonable_encoder, a utility function that lives in the fastapi.encoders
module. If you want to play around with the code and see how it all fits together, I suggest you open
a Python session within our environment, import CarDB from the models.py file, and import
the jsonable_encoder.

You may test the Pydantic model with the following lines:

car = {'brand':'Fiat', 'make':'500', 'km':4000,'cm3':2000,'pr
ice':3000, 'year':1998}

cdb = CarDB(**car)

jsonable_encoder(cdb)

You should then get the following output:

{'_id': '62702c8dd7269d7b7970190b', 'brand': 'Fiat', 'make':
'500', 'year': 1998, 'price': 3000, 'km': 4000, 'cm3': 2000}

This is precisely what we need – a nice JSON representation and a plain text string for our ID.

Creating our FastAPI backend 121

Connecting FastAPI to MongoDB

Now, I want to set up our FastAPI application and connect it to the MongoDB database. I will use a
Python package for managing environment variables – python-decouple, very similar to the Node.js
version of environment management. Another popular Python package with similar functionality is
dotenv. But python-decouple seems to play nicer with our preferred deployment solutions. You can
install it by entering the following command into your activated virtual environment:

$ pip install python-decouple

We will copy our MongoDB connection string and database and collection names into a .env
file using the simple dotenv syntax (basically no hyphens). Your .env file should look something
like this:

DB_URL=mongodb+srv://username:password@cluster0.fkm24.mongodb.
net/?retryWrites=true&w=majority

DB_NAME=carsApp

We can now start with our main.py file. Let’s begin by importing the decouple module and
reading its contents into a variable called config. The cast option means simply that the values
that decouple is reading from our .env file should be string values, like so:

from decouple import config

DB_URL = config('DB_URL', cast=str)

DB_NAME = config('DB_NAME', cast=str)

We now have our sensitive data available for development, yet it shouldn’t make it to the version control
system. Make sure that you have a valid .gitignore file that includes the following:

venv/

__pycache__/

.env

This is just the way I like to start things off; you might find a more suitable workflow. After having
the MongoDB credentials in place, I want to kickstart our application, so I begin with the following:

from fastapi import FastAPI

from motor.motor_asyncio import AsyncIOMotorClient

app = FastAPI()

@app.on_event("startup")

Building the Backend for Our Application122

async def startup_db_client():

 app.mongodb_client = AsyncIOMotorClient(DB_URL)

 app.mongodb = app.mongodb_client[DB_NAME]

@app.on_event("shutdown")

async def shutdown_db_client():

 app.mongodb_client.close()

Apart from the loading of environment variables, the only really interesting thing here is that we were
able to attach the MongoDB connection to the event startup of FastAPI and to close the connection
to a similar FastAPI event, shutdown (https://fastapi.tiangolo.com/advanced/
events/). There are other possibilities of handling the connection, but I feel that this is the most
natural and simplest way. OK, we have instantiated our FastAPI app and we have hooked our MongoDB,
but what is Motor and all this async stuff? Let’s take a pause from our app and talk a bit about drivers.

MongoDB, like other relational or NoSQL databases, needs a driver in order to be able to communicate
with a programming language – in our case, Python. MongoDB provides us with several options. For
instance, MongoEngine is an object-relational mapper (ORM) that provides functionality that would
be a bit redundant since we are using Pydantic for our model schemas and validation, and PyMongo is
the official Python driver that provides all the needed functionality at a low level. However, PyMongo
does not support asynchronous operations. Enter Motor (https://motor.readthedocs.
io/), which dubs itself a coroutine-based asynchronous API for MongoDB. Initially developed for
Tornado, Motor is now widely used together with FastAPI, as its syntax is very similar to PyMongo’s
(PyMongo is a dependency) and it is quite straightforward. We will go over the typical async parts
of the Motor-related code. It should be said that, for our application in this chapter, we could have
settled for PyMongo and achieved practically identical performance, but this is an oversimplified and
trivial example that is meant to be instructive, so it is better if we see how Motor works right away.

In our main.py file, we imported the Motor async client and fed it our connection string.
That is all that we need to do in order to obtain a connection to our server, while the following line
specifies the database that we are going to use. The collection name isn’t specified – we will insert and
read from it in the API functions (maybe we’ll have more collections down the line, who knows?).

Finally, instead of calling Uvicorn – our ASGI-compatible server – from the command line, we could
have wrapped the call in a typical pythonic if-name-main loop so that we could run the server
by just typing python main.py in the command prompt. In that case, we would just have added
the following at the end of the main.py file:

if __name__ == "__main__":

 uvicorn.run(

 "main:app",

 reload=True

)

https://fastapi.tiangolo.com/advanced/events/
https://fastapi.tiangolo.com/advanced/events/
https://motor.readthedocs.io/
https://motor.readthedocs.io/

Creating our FastAPI backend 123

Structuring FastAPI applications with routers

Putting all of our request-response logic in one file is perfectly possible, but as you start building even
slightly larger projects, you will see that it is not a good solution. FastAPI, like Express.js or Flask (with
blueprints), provides APIRouter – a module designed to handle a group of path operations related to a
single type of object. Using this approach, it could make sense to assign an APIRouter to handle cars at
the /cars path, maybe later, another one for users at /users, and so on. The FastAPI proposes a
type of project structure that is simple enough yet able to accommodate most of the use cases that you
might encounter. I will jumpstart this structure by simply adding another folder in our /backend
project folder and call it routers. Inside, we will add an empty __init__.py file, making the
folder a Python package, and our first APIRouter called cars.py. Modify the /routers/
cars.py file to match the following:

from fastapi import APIRouter

router = APIRouter()

@router.get("/", response_description="List all cars")

async def list_cars():

 return {"data":"All cars will go here."}

Routers in FastAPI are pleasantly simple to work with: we import the APIRouter on top, then we
instantiate it, and after that, we just treat it as a partial FastAPI app, if you will, defining routes with
the familiar decorators, response descriptions, and all the stuff that we have seen so far. This is just a
simple test route that should return a single JSON response, but in order to be able to use it, we have
to hook it up to main.py, our instance of FastAPI.

First, we need to import the router, and since they will reside in separate folders but have the same
name (router.py), in order to be able to distinguish one from another, we will rename it, at the
top of the main.py file:

from routers.cars import router as cars_router

In the same main.py file, add the following lines (after the line where you instantiated the
FastAPI app):

app.include_router(cars_router, prefix="/cars", tags=["cars"])

This line tells our FastAPI application to attach the router that we just defined and to assign it the /cars
prefix , which means that it will respond to requests whose path begins with /cars. Finally, we added
the tags property in order to have it displayed and nicely grouped in the OpenAPI documentation.
If you navigate now to the documentation, you should indeed find just one route defined at /cars
and responding only to GET requests. It is intuitive that this procedure can have us building “parallel”
or same-level routers in no time, but one of the biggest benefits of using APIRouters is that they
support nesting, which enables us to manage quite complex hierarchies of endpoints effortlessly!

Building the Backend for Our Application124

It is now time to create our first endpoint, and that for me is usually a /POST route when I do not
have any previous data inserted or imported into the database. I will explain in detail what is going on
with the first endpoint and the remaining endpoints should be much clearer. I will leave our dummy
GET endpoint for now and just add some imports at the top of the file. You should, of course, be
adhering to the Python imports order convention (standard library imports, third-party imports,
local application/library specific imports)! This is what we’re going to need for now in main.py:

from fastapi import APIRouter, Request, Body, status

from fastapi.encoders import jsonable_encoder

from fastapi.responses import JSONResponse

from models import CarBase

In the same file, after our dummy test GET route, add the following endpoint:

@router.post("/", response_description="Add new car")

async def create_car(request: Request, car: CarBase =
Body(...)):

 car = jsonable_encoder(car)

 new_car = await request.app.mongodb["cars1"].insert_

 one(car)

 created_car = await request.app.mongodb["cars1"].find_one(

 {"_id": new_car.inserted_id}

)

 return JSONResponse(status_code=status.HTTP_201_CREATED,

 content=created_car)

There is really nothing particularly new to you here: we have seen how to create async endpoints, we
are annotating the request and the car arguments, and we are setting the car to be of type CarBase,
our Pydantic model that we defined previously. In the first line inside the function, we are using the
jsonable_encoder helper in order to steamroll our ObjectId and cast it to a string. Finally,
we define a new_car variable and we assign it an async operation – a MongoDB insertion.

Here, things get interesting: you will remember that in main.py we were able to “attach” a MongoDB
client to our application instance. Well, this client is still here and we can find it in the routers as well,
so we only need to provide the following:

request.app.mongodb["cars1"]

After this, we can use all the PyMongo/Motor operations for querying MongoDB. I will not get into
every aspect of the syntax, but the tutorial on PyMongo (https://pymongo.readthedocs.
io/en/stable/tutorial.html) is very useful and I wholeheartedly recommend that you
take a look. Insert_one means exactly that: insert one instance into the database. The analogy
with the native MongoDB syntax is fully present.

https://pymongo.readthedocs.io/en/stable/tutorial.html
https://pymongo.readthedocs.io/en/stable/tutorial.html

Creating our FastAPI backend 125

Finally, we want to return the inserted object through the response, and it is an excellent opportunity
to see how our first query is working. The created_car is a find_one MongoDB query result,
translated into the Motor/Python language: we still have to define the collection and bring over our
request.app.mongodb client that is omnipresent in our app, and then we simply supply the
ID of the freshly inserted car. Try it out in the interactive documentation or fire up Insomnia or
HTTPie. If you installed HTTPie in our new virtual environment, you could play with this endpoint
and insert some dummy data:

(venv) λ http POST "http://localhost:8000/cars/" brand="aaa"
make="500" year=2015 cm3=1222 price=2000 km=100000

At the same time, you can monitor the database in Compass and see that it is indeed getting populated!
This is exciting. If we try to pass some faulty data, pydantic will be our fierce guardian and will notify
us of any data that does not belong in the database.

Let us now try to retrieve a car by its ID. The following code should be understandable. In the
routers/car.py file, after our /POST handling route, add the following code:

@router.get("/{id}", response_description="Get a single car")

async def show_car(id: str, request: Request):

 if (car := await request.app.mongodb

 ["cars1"].find_one({"_id": id})) is not None:

 return CarDB(**car)

 raise HTTPException(status_code=404, detail=f"Car with

 {id} not found")

This path has just a couple of specific points that I want to tackle: as the argument, we are expecting
an ID (id), which is of type string and we take the request. The if line includes some Python
syntactical sugar – we are using the controversial walrus operator, := (a colon followed with an equals
sign). It simply enables us to do an assignment (the result of the awaited MongoDB operation) and
return it, while checking that it actually exists. After that, we simply pass our car instance from the
database to the Pydantic model CarDB and return it. If the car is not to be found, we raise an HTTP
exception with a meaningful message and the appropriate status code.

We are now ready to replace our dummy GET route with a fairly more complex path operation. In
the file cars/router.py replace the dummy route with the following:

@router.get("/", response_description="List all cars")

async def list_all_cars(

 request: Request,

 min_price: int=0,

 max_price:int=100000,

Building the Backend for Our Application126

 brand:Optional[str]=None

) -> List[CarDB]:

 query = {"price":{"$lt":max_price, "$gt":min_price}}

 if brand:

 query["brand"] = brand

 full_query = request.app.mongodb['cars1'].find(query).
sort("_id",1)

 results = [CarDB(**raw_car) async for raw_car in

 full_query]

 return results

Again, nothing is really new in this path – we are setting some default values for our query parameters
– the minimum and maximum price and we add the brand into the mix, enabling us to query by
brand. We could of course make this much more complex, but I believe that this is more than enough
in order to showcase the main ideas.

I built a dictionary for the query and simply named it query. Since it is a Python dictionary that we
pass to MongoDB, it is very easy to update or modify according to our needs. In this case, we just
check for the existence of a brand parameter. If such a parameter is provided, we simply add it to our
query dictionary before passing it to MongoDB. Finally, in the query, we added a sorting function.

The results are returned in the form of an async generator with the async-for construct. There are other
viable options here – we could use something like the following:

results = await full_query().to_list(1000)

There is one more thing that needs to be fixed at this point – this query is returning just too many cars
all at once – all of them in fact! At this point, it might not seem like a problem but try importing a couple
of thousand cars into our database and watch as things become tricky. While there are ways to limit
the query on the client (React) side, it is much more efficient to use the database layer to perform the
pagination and return to the client only a limited set of results. Before leaving the GET route, let’s add
some simple pagination functionality. Pagination is basically defined with a query string denoting
the page that we want to get, while the variable parameter is the number of items (cars) that we want
to get on every “page.” I will just make a simple hardcoded solution for now with a fixed number of
results (25, to be precise), but later we will see how this simple functionality can be parameterized.

Modify the cars/router.py and add the following parts:

@router.get("/", response_description="List all cars")

async def list_all_cars(

 request: Request,

 min_price: int=0,

Creating our FastAPI backend 127

 max_price:int=100000,

 brand: Optional[str] = None,

 page:int=1,

) -> List[CarDB]:

 RESULTS_PER_PAGE = 25

 skip = (page-1)*RESULTS_PER_PAGE

 query = {"price":{"$lt":max_price, "$gt":min_price}}

 if brand:

 query["brand"] = brand

 full_query = request.app.mongodb

 ['cars1'].find(query).sort("_id",-

 1).skip(skip).limit(RESULTS_PER_PAGE)

 results = [CarDB(**raw_car) async for raw_car in

 full_query]

 return results

We have two more routes in order to complete our CRUD job – the U(pdate) and D(elete). They should
be pretty simple compared to what we have seen, as it is only a matter of implementing what we have
done with the previous paths. A further simplification is to allow only the price to be updated, as the
remaining data shouldn’t really change (although a periodic mileage-decreasing function could come
in handy!). Let’s add these path operations to our cars/router.py file:

@router.patch("/{id}", response_description="Update car")

async def update_task(id: str, request: Request, car:

CarUpdate = Body(...)):

 await request.app.mongodb['cars1'].update_one(

 {"_id": id}, {"$set": car.dict(exclude_unset=True)}

)

 if (car := await request.app.mongodbm

 ['cars1'].find_one({"_id": id})) is not None:

 return CarDB(**car)

 raise HTTPException(status_code=404, detail=f"Car with

 {id} not found")

@router.delete("/{id}", response_description="Delete car")

async def delete_task(id: str, request: Request):

Building the Backend for Our Application128

 delete_result = await request.app.mongodb

 ['cars1'].delete_one({"_id": id})

 if delete_result.deleted_count == 1:

 return JSONResponse(status_code=status.

 HTTP_204_NO_CONTENT)

 raise HTTPException(status_code=404, detail=f"Car with

 {id} not found")

These routes are very similar to the others – we use the PATCH method to update and the DELETE
method to delete. The interesting thing in this code is the set operation in the update route: we took
advantage of the exclude_unset flag in order to enable MongoDB to update only the fields that
are provided in the request, leaving the rest unaltered.

Congratulations! You now have your first fully functional REST API with CRUD functionality and
some fancy filtering baked in when it comes to reading data. There are still a couple of things to do in
order to enable our app to be usable from within a frontend framework, React, for instance.

CORS – Cross Origin Resource Sharing

Cross origin resource sharing (CORS) refers to the policy that is applied when we incur into situations
where our backend (FastAPI) has to communicate with the frontend (React) and they reside on different
origins. An origin is simply a combination of a protocol (http, for instance) a domain (like localhost
or farmstack.net), and a port (80, or 8000, or 3000). The default action is to block all unauthorized
CORS requests, so if you try to run a React project on port 3000 and try to access our fresh cars
API, you will fail. In order to make it work, frameworks provide a way of specifying which origins are
allowed to make requests to our API, and FastAPI is no different – it makes it ridiculously easy in fact.

FastAPI implements the concept of middleware – something that you might have encountered in Django
or Express.js – two popular frameworks that make extensive use of the concept. Middleware is simply
a set of functions that run on every request and tap into the request/response cycle, intercepting the
request, manipulating it in some desired way, then taking the response before it is sent to the browser
or client, performing additional manipulation if needed, and finally, returning the final response.

Middleware is really based on the ASGI specification, and it is implemented in Starlette, so FastAPI
enables us to use it in all our routes and optionally tie it to a part of an application (via APIRouter)
or the entire app. Let’s see how we can implement them in order to allow our API to accept incoming
requests from our React frontend, which will run (for now) on port 3000, React’s default:

1. Fire up your main.py file where our main app resides and add the following import at
the beginning:

from fastapi.middleware.cors import CORSMiddleware

Creating our FastAPI backend 129

2. After all the imports, let’s define some origins for which we want to allow communication:

origins = [

 "http://localhost",

 "http://localhost:8080",

 "http://localhost:3000",

 "http://localhost:8000",

]

3. Finally, we have to add this middleware to our application in order to make use of it. The
FastAPI recommended way of doing so is to just use the addMiddleware method on the
app itself, right after instantiating the app:

app = FastAPI()

app.add_middleware(

 CORSMiddleware,

 allow_origins=origins,

 allow_credentials=True,

 allow_methods=["*"],

 allow_headers=["*"],

)

4. While, another viable option is to import the middleware directly from Starlette and include
it in the instantiation call:

from starlette.middleware import Middleware

from starlette.middleware.cors import CORSMiddleware

middleware = [

 Middleware(

 CORSMiddleware,

 allow_origins=["*"],

 allow_credentials=True,

 allow_methods=["*"],

 allow_headers=["*"],

)

]

app = FastAPI(middleware=middleware)

Building the Backend for Our Application130

5. In this case, the complete main.py file will look like this:

from decouple import config

from fastapi import FastAPI

from fastapi.middleware.cors import CORSMiddleware

from motor.motor_asyncio import AsyncIOMotorClient

from routers.cars import router as cars_router

DB_URL = config("DB_URL", cast=str)

DB_NAME = config("DB_NAME", cast=str)

origins = ["*"]

app = FastAPI()

app.add_middleware(

 CORSMiddleware,

 allow_origins=origins,

 allow_credentials=True,

 allow_methods=["*"],

 allow_headers=["*"],

)

@app.on_event("startup")

async def startup_db_client():

 app.mongodb_client = AsyncIOMotorClient(DB_URL)

 app.mongodb = app.mongodb_client[DB_NAME]

@app.on_event("shutdown")

async def shutdown_db_client():

 app.mongodb_client.close()

app.include_router(cars_router, prefix="/cars",
tags=["cars"])

Finally, in the GitHub repository of the book, I have provided a real, albeit a bit crippled, dataset of
cars in a convenient CSV format and a simple script for importing them into MongoDB. They could
be imported directly in Compass as a CSV file, but that would bypass our pydantic model, which
treats IDs as strings, so we wouldn’t be able to query our data relying on ObjectId. The script
uses a plain synchronous PyMongo driver and a CSV reader, along with some validation logic. You

Deployment to Heroku 131

are more than welcome to take it for a test drive and import as many cars as you want. I know that I
always wanted to have some data to play around with, so I just wanted to provide it. By the way, the
data is real, and it was scraped two years ago.

Deployment to Heroku
If you have been able to play with our backend a bit and test it with HTTPie or Insomnia, you will
certainly be satisfied with your work, as you will be able to see how your API responds to all the CRUD
operations. After all, we were able to complete our first task! Wouldn’t it be great if we could deploy
our backend for the world to see?

We will examine deployment options for a FastAPI project later, but I feel that this is a good moment
to quickly show how easy the deployment of a FastAPI app to a platform-as-a-service (PaaS) can
be. I get motivated and excited like a little kid every time I put something online, so I want to quickly
show you how you can deploy this simple API to Heroku.

Heroku is one of the leading container-based platforms for the deployment and management of
applications; it has been on the market for quite some time now and it has a free tier (albeit with some
limitations that will not be a deal-breaker for our purposes).

The main concept of Heroku is the use of Dynos – virtualized containers for applications that are
scalable and run Linux in isolated environments. You can get acquainted with the infrastructure
and principles on their site: https://www.heroku.com/dynos. Heroku is a versatile and
powerful tool to have under your belt, so it seems right to make our first deployment using it, using
the following steps:

1. The first step is to create a Heroku account – it is free and all you need is a valid email address.
Go to https://signup.heroku.com/, fill in the form, and validate your email address.

2. The second step is to download the Heroku CLI – the magic tool that will enable us to easily
deploy our FastAPI interface. Navigate to https://devcenter.heroku.com/
articles/heroku-cli or simply google download Heroku CLI and follow the
instructions relative to your operating system.

Remember that you should have Git already installed and your backend folder under version
control. It is a good moment to double-check our .gitignore file. It should contain (at
least) the following:

venv/

__pycache__/

.env

.vscode/settings.json

https://www.heroku.com/dynos
https://signup.heroku.com/
https://devcenter.heroku.com/articles/heroku-cli
https://devcenter.heroku.com/articles/heroku-cli

Building the Backend for Our Application132

3. Fire up the Heroku CLI (you might need to restart the shell if you just installed Heroku CLI
in order to make it available!) and log in. In the shell, ideally the one hosting your virtual
environment, type the following:

heroku login

4. If you are not already logged in, and chances are you aren’t since you just started, you will be
prompted to open a browser and insert your credentials. Do so and close the tab.

5. Heroku needs a GitHub repository to work, so now is a good moment to save our precious
work and commit our changes. In your shell, type the following commands:

git add .

6. Then, think of a meaningful message and type the following:

git commit -m "first API version – CRUD working"

7. Now that we have our application under (version) control, we are ready to deploy to Heroku!
First, we need to create something called a Procfile – it is really what we are going to name it, no
extensions. It is simply a way of telling Heroku what process(es) it should run for the deployment.
Create the file in the /backend directory and make sure it contains only the following line:

web: uvicorn main:app –host 0.0.0.0 –port=$PORT

8. The last step in this preparation is to tell Heroku which Python libraries are needed for our
project in order to collect them and run them. In the past, I often had to play a bit of a trial-
and-error game with various versions of packages since the Python versions might differ
on Heroku’s dyno and the local machine. The safest way of solving this is to list the bare
minimum in the requirements.txt file and let the cloud Python interpreter figure out
the dependencies – in case you are not bound to a specific version of a package. In this case,
my requirements.txt file is as follows:

dnspython

fastapi

motor

PythonDNS

uvicorn

python-decouple

9. Now, we are ready to create a new Heroku app – in the terminal, type the following:

heroku create

Summary 133

The previous command generated a new app for us and it also created a remote Git
repository on Heroku itself. When we push our code to this remote repo, the deployment
will automatically begin. If you are curious, you can issue git remote -v and verify
that the remote is indeed on Heroku (git.heroku.com/your-random-app-
name.git).

You will be greeted with the URL of your Heroku app, so it might be a good idea to keep it
somewhere copy-pasted.

10. The last thing that should be done before pushing our code to Heroku is to set the environment
variables, since they are not in the repository. Although this can be done from the Heroku web
interface (config – reveal variables) it is easier to do from the shell, the syntax is the following:

heroku config:set DB_URL="mongodb+srv://yourdata"

Repeat this for the DB_NAME and other variables if needed.

11. It was a bit of work, I’ll admit, but now you finally get to type the following (drumroll!):

git push heroku master

You will be able to follow the process in the shell output: building the stack, detecting the Python
environment, installing dependencies, discovering process types from the Procfile… Finally, it should
output that the Deployment is done. You can type heroku open and you should be able to see
your app with a blunt Not Found page. If you, however, test the URL with /cars appended, you
should see your FastAPI backend in all its glory!

Summary
In this chapter, we have created a fully functional CRUD backend application for our cars – MongoDB is
connected at each startup of the app and disconnected on each shutdown, and we have this connection
available in every request. We implemented simple yet functional, and, I hope, illustrative models
and opted for strings as IDs in our database. It is time to create our frontend while trying to keep it
equally simple.

There are many improvements and not-so-advanced features that should be implemented in this API,
but I have omitted them for the sake of brevity. Pagination of results – with the use of the limit and
skip operators in MongoDB implemented as query strings in FastAPI – is probably the first thing that
comes to mind. FastAPI and its way of handling query strings, combined with the Motor/PyMongo
way of constructing MongoDB queries as Python dictionaries, offers almost unlimited flexibility and
extensibility. If you feel inclined to try things out, I suggest that you try to implement a couple more
endpoints with the use of the MongoDB aggregation framework.

Building the Backend for Our Application134

Finally, you have learned a valuable skill: you have successfully deployed your API to Heroku, a popular
platform for the development, management, and deployment of all kinds of apps, and now you can
show your work to a friend that loves a good API!

With our backend in place and with the initial specification ready, I want to move on to the front
end – in the next chapter, we will create a simple React and implement all of the FastAPI endpoints
that we just built.

6
B u i l d i n g t h e F r o n t e n d o f

t h e A p p l i c a t i o n

In the previous chapter, you learned how to build a simple yet complete FastAPI backend – an API
for car management with the complete set of CRUD operations and some filtering and pagination.
Now, we will create an equally simple frontend with our knowledge of React, JSX, and a couple of
Hooks. In this chapter, we will be creating a very bare-bones React frontend for our API. I will start
by creating the React app using the create-react-app tool and then set up Tailwind CSS for styling.
After that, I will give a very brief introduction to an essential React package, React Router, and I will
define the virtual pages that our app will need. Finally, we are going to add the basic functionality
and interactivity needed in order to be able to perform CRUD operations on our MongoDB instance,
using the FastAPI backend that we created. This application is not going to be very realistic – there
will be no security implemented and we will rely only on the backend validation rules from FastAPI.
The idea is to showcase the flow of data between MongoDB and the React web page through FastAPI.

In this chapter, we will cover the following topics:

• Sketching the application pages and components

• Setting up Tailwind CSS and React Router 6

• Scaffolding the needed components

• Creating the virtual pages and their functionalities

By the end of the chapter, you will be able to implement simple but essential CRUD operations and
you will be able to apply the same logic to any type of data that you might need. Limiting ourselves
to just two essential React Hooks is not really an important factor here – you will see that we can
achieve the desired functionality and later extend this approach as new requirements are imposed.

Building the Frontend of the Application136

Technical requirements
The technical requirements for this chapter are the same as the ones described in Chapter 4, Setting
Up a React Workflow: you will need Node.js (version 14 or later) in order to be able to develop your
React application. Along with Node.js, you should have Visual Studio Code, which is probably one
of the best tools when working with such a broad range of technologies (MongoDB, Python, React,
JavaScript, shell).

Besides these installed tools, you should keep FastAPI running in a separate shell in order to be able
to connect it to our frontend.

Creating our Frontend with React
With our backend ready and eager to respond to requests, we can now prepare our React environment.
First, I want to give you a brief overview of what we are going to build.

With the help of our friend, create-react-app, we will create an app called frontend in our
project folder. Then, we will set up Tailwind CSS, our UI library of choice in the same way that we did
in the previous chapter, so I will not waste your time repeating the same steps.

I will then give a very brief introduction to React Router, a package that allows us to monitor the
URL of our frontend and display different pages accordingly. Finally, I am going to tackle the pages
needed for the application that roughly correspond to the path operations: a page for inserting a new
car, one for listing and querying them, and one for modifying the price of the car or deleting it. I
will make use of the basics that we saw in Chapter 4, Setting Up a React Workflow: create-react-app,
Tailwind, some Hooks, and some very simple components. After that, we will be adding basic CRUD
functionality to our frontend.

Setting up React and Tailwind

We have already been through this, but just keep in mind that you should be at the root of our project
(Ch5) and type the following:

npx create-react-app frontend

After this process has been completed, follow the procedure from Chapter 4, Setting Up a React
Workflow, and install and set up Tailwind CSS. The procedure is exactly the same and we should end
up with the same starter React project with Tailwind CSS enabled. As denoted in Chapter 4, Setting
Up a React Workflow, you can examine the generated page and test it with some simple classes, such
as bg-red-500. If everything is working, the page should turn red, and you are ready to continue.

Creating our Frontend with React 137

Installing and setting up React Router 6

Now, we need to start thinking about all of the possible pages that our application should have, and
this is maybe a moment to take out a notebook or a piece of paper and start doing some drawings.
This is a trivial application, so let’s just say that we want these basic “pages” (I put quotes because
they’re not really pages – they are routes within the same page):

• A home page, at the route /.

• A cars page for displaying all cars or according to some filter: /cars.

• A new car page, with a form for inserting new cars: /cars/new.

• A single car page, for viewing a single car by ID: /cars/:id – this page will also be responsible
for updating prices and deleting cars, as I want to keep things as simple as possible.

Let’s start setting up the router: first, we have to install it. Follow these steps:

1. Stop the process if it is still running and type the following:

npm install react-router-dom@6

Now, I do not know if you have already worked with the router, but it used to be installed
in the App.jsx component and we enabled routing from there, application-wide. The
latest version, 6, instructs us to use the index and, since I really do not want to enter into
the intricacies of this powerful React package, I will just show you how to set up a few basic
routes and leave you to the excellent documentation online. React Router has evolved a lot
since the last versions and version 6 has seen numerous improvements and changes, as well
as the ability to handle nested routes differently than in the previous versions. The basic
ideas, however, remain the same: the router passes properties (for example, the location) to
the components it renders. In the following chapter, we will gradually introduce a couple of
other features of the router, but for now, this will suffice.

React Router basically provides us with a set of components and Hooks that allow us to
implement declarative routing.

2. In the src/index.js file, the document into which React injects all of its magic, import
after React on ReactDOM the following packages:

import {BrowserRouter,Routes,Route,

} from "react-router-dom";

Building the Frontend of the Application138

3. Now comes the tedious part: we should create empty components for each route in our router,
so remember the React Visual Studio Code plugin shortcut (hint: rafce) and create a folder
inside your source directory. Inside this folder, which I named /pages, I will scaffold the
following components: Car, NewCar, and Cars; they all have the same plain structure. This,
for instance, is what the Cars component looks like:

const Cars = () => {

 return (

 <div>Cars</div>

)

}

export default Cars

4. Now that we have our components/pages laid out, we can import them all into the
index.js file and hook the router up. Edit the src/index.js file:

import React from 'react';

import ReactDOM from 'react-dom/client';

import {

 BrowserRouter,

 Routes,

 Route,

} from "react-router-dom";

import Car from './pages/Car';

import Cars from './pages/Cars';

import NewCar from './pages/NewCar';

import './index.css';

import App from './App';

const root = ReactDOM.createRoot(document.
getElementById('root'));

root.render(

 <React.StrictMode>

 <BrowserRouter>

 <Routes>

 <Route path="/" element={<App />} />

 <Route path="cars" element={<Cars />} />

 <Route path="cars/new" element={<NewCar />} />

 <Route path="cars/:id" element={<Car />} />

Creating our Frontend with React 139

 <Route path="about" element={<About />} />

 </Routes>

 </BrowserRouter>

 </React.StrictMode>

);

This is a bit long, I know, but I prefer to show you the whole file so that you can see what is going on.
Essentially, every path (/car, /cars, and so on) is wrapped inside a Route component, and they
all have an element or component (that we kept in the /pages folder) that will render when their
number (route) is called. React Router 6 enables nested routing so that all of our car-related CRUD
routes can be laid down in a more elegant way, but I just want to go with the simplest solution for
now. If you start the server with npm start and try out a couple of routes manually (navigating to
http://localhost:3000/cars, for instance), you should see our boring white components
responding to the routes.

Notice that, with this setup of the React Router, App.jsx has lost some significance: it is just a page
like all of the others, as the router contents get loaded directly into the index.js file, effectively
bypassing the App component – we could have loaded the router into the App.js file instead.

With our virtual pages ready to be coded, we can proceed and create a basic structure for our app –
the reusable components and the layout.

Layout and components

Single-page React-based applications may have numerous virtual pages, but the chance is that they
will share some, if not the vast majority of, elements: a header with navigation, a footer, and maybe
even more. Since we are planning our application and we have correctly identified the header and
the footer as reusable components that will be shared across all pages, we need a way to ensure that
we do not have to import them into every page. Enter the layout component. It is simply a React
component that will wrap the content provided via props and include all the shared components across
the app. Without further ado, let’s make a folder called components in the src folder and create
generic components called Header.jsx and Footer.jsx. Finally, let’s create a component
called Layout.jsx and edit it a bit:

import Header from "./Header";

import Footer from "./Footer";

const Layout = ({children}) => {

 return (

 <div className="flex flex-col h-screen bg-orange-400">

 <Header />

 <div className="flex-1">{children}</div>

Building the Frontend of the Application140

 <Footer/>

 </div>

)

}

export default Layout

Now, in order to be able to use our beautiful orange layout (I am kidding, it’s ugly but it’s visible), we
have to wrap our pages (App, Car, Cars, and so on) like the App.js file, for instance:

import Layout from "./components/Layout";

function App() {

 return (

 <Layout>

 <div>

 This is the App

 </div>

 </Layout>

);

}

export default App;

If you inspect the root page, which displays the App component, you will see that I have made the
page a flexbox display, with the content able to grow and fill the page, while the header and footer
take up only their own height. Believe it or not, achieving this layout just a decade ago required some
fiddling. I will not get into the Tailwind CSS classes, but they are made to be intuitive: flex means
display:flex, flex-col translates to flex-direction:column, h-screen means
height:100vh, and so on.

More manual labor ahead: you should wrap all the remaining pages in the layout component, so
let’s do it… Done? Great! On to some more interesting things.

Let’s just create some navigation in our Header.jsx component first:

import {NavLink} from "react-router-dom";

const Header = () => {

 return (

 <nav className="flex justify-between relative items-center

 font-mono h-16">

 <Link to="/" className="pl-8 text-xl font-bold">Cars

 FARM</Link>

 <div className="pr-8 font-semibold">

Creating our Frontend with React 141

 <NavLink className={({ isActive }) =>

 isActive ? "active-link" : "p-4"

 } to="/">Home</NavLink>

 <NavLink className={({ isActive }) =>

 isActive ? "active-link" : "p-4"

 } to="/cars">Cars</NavLink>

 <NavLink className={({ isActive }) =>

 isActive ? "active-link" : "p-4"

 } to="/new">New Car</NavLink>

 </div>

 </nav>

)

}

export default Header

I strongly encourage you to get acquainted with the Tailwind way of doing things – it looks kind of
weird at the beginning, but after a while, you just catch yourself styling apps and web pages through
classes incredibly quickly. In the preceding code, Tailwind does everything for us: we have a single
nav element and the classes applied make it a flex container, set the direction to row (the default),
justify the items between, center them vertically, and apply a height of 4 rem (h-16), while the font-
mono class sets the display font to be Monospace. For the links, I used React Router’s components
NavLink and Link, which provide navigation to our app. The difference is that NavLink is aware of the
current page and is thus able to provide a different class according to the isActive flag.

Finally, the .active-link class is not something provided by Tailwind: I made it up. I then went to
my index.css file and edited it in order to apply existing Tailwind classes to my custom active-
link class (the text is white, the background is yellowish, and it has some padding and shadow):

@tailwind base;

@tailwind components;

@tailwind utilities;

@layer utilities{

 .active-link{

 @apply bg-yellow-500 p-4 shadow-md text-white

 }

 }

The @apply directive is a handy way to apply multiple Tailwind classes (and respective styles) to an
element without polluting the HTML/JSX markup too much.

Building the Frontend of the Application142

After having scaffolded our components, we can now add a bit of style, using our Tailwind CSS utility
framework. I will not put the code here, but you can find it in the repository and, since Tailwind is
really just CSS classes, you should be able to see exactly what each class does.

Creating the pages functionalities

It is finally time for our beautiful React frontend to meet our speedy FastAPI! I am now going to
connect our React shell with the API in order to enable the CRUD functionality that is our main (and
for now, only) task. I want to begin with the /cars page, which should display all the cars and maybe
provide some filters – a dropdown with the most frequent car brands, for example. We will later see
how we can leverage MongoDB’s distinct method in order to populate such a field.

We will need a simple card component, and in order to keep things really simple, I will just use image
placeholders instead of real pictures of cars. Let’s put our humble knowledge of React Hooks to good
use and create a new Cars.jsx component (or page):

import Layout from "../components/Layout"

import Card from "../components/Card"

import {useState, useEffect} from 'react'

const Cars = () => {

 const [cars, setCars] = useState([])

 const [brand, setBrand] = useState('')

 const [isPending, setIsPending] = useState(true)

 useEffect(()=>{

 fetch(`http://localhost:8000/cars?brand=${brand}`)

 .then(response=>response.json())

 .then(json=>setCars(json))

 setIsPending(false)

 },[brand])

This is a chunk of code that shouldn’t present any concern, so let’s take a look at it from top to bottom.
First, we import our components – the Layout and the Card component, which will be used to
display the individual cars. After that, we import our two Hooks – useState and useEffect.
The Cars function uses three state variables: cars, for the array of cars to be displayed (initially an
empty array), brand (initially we set it to an empty string), and a flag – isPending. This flag will
be set to true while the frontend is fetching the JSON response from our API and will be reverted
to false when the data is loaded.

Creating our Frontend with React 143

The useEffect function, as we saw in the previous chapter, takes two arguments – a function
that will be executed for external effects and an array of dependencies. In our case, the function to
be executed is very simple: a simple fetch request to our API, using a single query parameter –
the string, initially set to an empty string, thus returning all the cars. We could have added the price
range selectors, and I suggest that you try adding them yourself, maybe with two numeric text inputs.
The array dependency is simple in this case – we want to run the fetch only when the brand state
changes, so that it goes into the array. If you were to implement other filters, this is the place to put
them. Notice that I have used the old-school JavaScript promise syntax with then(). We cannot
use async/await functions in useEffect, although we can declare them and then call them when
needed. Since we are performing a very simple fetch request, this will do the job. Now, what do we
do with the selector for the car brands?

The following arrow function is the handler of the brand selector:

 const handleChangeBrand = (event) => {

 setCars([])

 setBrand(event.target.value)

 setIsPending(true)

 }

Again, I have kept the code very simple: this function will be passed as the handler of the brand
select input and, when triggered, it will carry out a couple of operations: first, we set the cars array
to be empty, then we set the brand to the value of the selected option, and finally, we set the pending
flag to true.

Let’s take a look at the return statement of the components, the JSX. I have removed all the numerous
Tailwind classes in order to make the file more readable:

return (

 <Layout>

 <h2>Cars - {brand?brand:"all brands"}</h2>

 <div>

 <label htmlFor="cars">Choose a brand: </label>

 <select name="cars" id="cars"

 onChange={handleChangeBrand}>

 <option value="">All cars</option>

 <option value="Fiat">Fiat</option>

 … more options here

 </select>

 </div>

 <div>

Building the Frontend of the Application144

 {isPending && <div>

 <h2>Loading cars, brand:{brand}...</h2>

 </div>}

 <div>

 {cars && cars.map(

 (el)=>{

 return (<Card key={el._id} car =

 {el} />)

 }

)}

 </div>

 </div>

 </Layout>

)

The JSX that eventually outputs our /cars page begins with an h2 element that displays the brand
of the selected cars if selected. Immediately after that, we are greeted with our brand selector that has
our previously defined onChange handler attached. Finally, we have a loading div that is usually
represented by a spinner image and that will be visible only while the API is being read – chances are
you will not be able to see it on your local machine.

The cars are displayed in standard React cars&&cars.map() fashion: if the cars array is
populated, then map over the array and put each car into a card. I will not display the code for the
card since it is practically identical to the code from Chapter 4, Setting Up a React Workflow.

The following screenshot shows what our single-page app (SPA) should look like – it is very simple,
with a header containing the navigation, the main body, and a simple dark footer.

Creating our Frontend with React 145

Figure 6.1 – The Cars FARM application displaying cars

The page will not win any awards, but it does what it was supposed to do – it displays cars from our
FastAPI service, and it even has some filtering capabilities!

Let’s tackle the creation part of CRUD, the page that we assigned the /new route in the React Router
setting. I want to point out that in a real-world setting, you probably wouldn’t want to create the
following page the same way that I did. I want, however, to display some basic React features and
how the communication with the FastAPI server can be as transparent as possible. Let’s break the
code down – first, we are going to need a form input component. Again, in a real setting, you will
probably want to use something like Formik or the React Form Hook, but I just want to show how
React enables us to deal with the data flow in a much easier way compared to vanilla JavaScript or
older solutions such as jQuery.

The form helper component will really have a simple task: it just needs to display a form element, set
its type (numeric or text in our case), the label, name, and an onChange event handler:

const FormInput = (props) => {

 const { label, placeholder, type, onChange, name } = props

 return (

 <div>

 <label>{label}</label>

 <input

Building the Frontend of the Application146

 placeholder={placeholder}

 type={type}

 name={name}

 onChange={onChange}

 />

 </div>

)

 }

 export default FormInput

I have omitted the Tailwind classes again in order to preserve some space. The input field takes a total
of five props and the component structure is very simple.

Now, on to the NewCar.js component. First, I want to import our Hooks, the Layout component
and the FormInput component:

import {useState} from 'react'

import {useNavigate} from "react-router-dom"

import Layout from "../components/Layout"

import FormInput from '../components/FormInput';

After the usual imports, we have a newcomer – useNavigate from the React Router – which is
simply a function that will allow me to programmatically navigate to another React page. Alongside
our Layout component that wraps every single page, I imported the FormInput component.
The logic here is simple – we abstracted the form input because we want to be able to reuse it, so we
can fit all the inputs into an array. Bear in mind that here we are playing with only five car features,
while most car sales sites have at least 30 or even 50!

At the beginning of the NewCar arrow function component, I want to initialize an empty car object
and then gradually populate it with the form. I defined an object at the beginning – the emptyCar,
which is basically a car object with all of its features set to empty or null. This object will be used to
initialize our state variable, which I called newCar – the car that, if everything goes according to
plan, will have the honor of being inserted in our MongoDB:

const NewCar = () => {

 const emptyCar = {

 "brand":"",

 "make":"",

 "year":null,

 "cm3":null,

 "price":null

Creating our Frontend with React 147

 }

 const inputs = [

 {

 id:"brand",

 name:"brand",

 type:"text",

 placeholder:"Brand",

 label:"Brand"

 },

 {

 id:"make",

 name:"make",

 type:"text",

 placeholder:"Make",

 label:"Make"

 },

 {

 id:"year",

 name:"year",

 type:"number",

 placeholder:"Year",

 label:"Year"

 },

 {

 id:"price",

 name:"price",

 type:"number",

 placeholder:"Price",

 label:"Price"

 },

 {

 id:"cm3",

 name:"cm3",

 type:"number",

 placeholder:"Cm3",

 label:"Cm3"

Building the Frontend of the Application148

 },

 {

 id:"km",

 name:"km",

 type:"number",

 placeholder:"km",

 label:"km"

 },

]

Next, I defined an array of inputs that correspond to the features of our car, which, in turn, is defined
in our pydantic model. The name is important, so it has to be lowercase since these will be the keys
to our JSON objects! Returning to real-life car sales sites, you would probably want to put the inputs
in a separate file if the number is too big, or resort to an external library.

The next part is about making use of the state variables:

const [newCar, setNewCar] = useState(emptyCar)

const [error, setError] = useState([])

const navigate = useNavigate();

As I mentioned earlier, we have one crucial state – the newCar object. I initialize it with the emptyCar
object, setting all the properties to empty strings and nulls. I have added another state variable called
error and set it to an empty array – here, I will put all the errors that come directly from our backend.
I will not implement client-side validation because I want to show the bare-bones communication
between FastAPI and its pydantic responses and React. In a real-world environment, you would use
some client-side validation and not even try to send incomplete or invalid data to the server! The last
line just instantiates the navigation for React Router. Here, we move on to the event handlers:

const handleSubmit = (e)=>{

 e.preventDefault()

 addCar(newCar)

}

const onChange = (e) => {

 setNewCar({...newCar, [e.target.name]: e.target.value})

}

const handleReset = (e) => {

 setNewCar(emptyCar)

}

Creating our Frontend with React 149

handleSubmit simply prevents the default submitting of the form, a React classic, and then uses
the spread operator (three dots) to update the initially “empty” newCar object with the property
that is passed to the handler. This is why it was important to set the names of the inputs correctly,
as the field brand, for instance, in the handler function becomes {“brand”:”Ford”} and part
of the newCar object. Since I passed this same handler (onChange) to every input in my inputs
array, that simply means that every time you change the value of any input, the newCar state object
will be updated.

The handleReset simply resets the form (no preventDefault here because we want that
to happen) and resets our newCar to the initial (empty) values. Let's now see the main function of
the component, the addCar:

const addCar = async (newCar)=>{

 const response = await fetch("http://localhost:8000/cars/",{

 method:"POST",

 headers:{

 'Content-Type':'application/json'

 },

 body:JSON.stringify(newCar)

 })

 const data = await response.json()

 if(!response.ok) {

 let errArray = data.detail.map(el=>{

 return `${el.loc[1]} -${el.msg}`

 })

 setError(errArray)

 } else {

 setError([])

 navigate('/cars')

 }

 }

There is a lot going on here – first, I try to send a fetch request to our API using the appropriate
method (POST), header (content-type set to application/json), and the body as a JSON
object. I repeat: you would not want to do it this way without proper validation! This is for demonstration
purposes because I find it useful to see the data flow through both the backend and the frontend.

Building the Frontend of the Application150

The FastAPI backend will send some response, and that response might be valid or not. If the response
is OK, which is just a concise way of telling us that the status code of the response is in the 200-299
range (so, 200 OK or 201 CREATED – the good stuff), we set the error to an empty array and
navigate, with the help of React Router, happily to a new location – in my case, /cars. If, however,
the response is not OK, I gladly take the FastAPI error messages (because there are several – for every
field, for every invalid or required but missing value) and map them into the errors array. I did a bit
of parsing, but you can figure it out easily if you analyze any error response from FastAPI’s POST
requests: the errors are under the details key, and they have a location (in this case, it is always
the body and the field) and a message. I constructed this array on purpose because I wanted to display
it on the page, but it is not something that you would do like this: you would want to mark the form
fields containing errors with the color red or something similar and display the messages beside the
corresponding fields.

Let’s see the output of the component now:

return (

 <Layout>

 <div>

 <h1>Insert a New Car</h1>

 </div>

 <div>New car status:{JSON.stringify(newCar)}</div>

 {error &&

 {error && error.map(

 (el, index)=>(<li key={index}>{el})

)

 }

 }

 <div>

 <form onSubmit={handleSubmit}>

 {inputs.map((input) => (

 <FormInput

 key={input.id}

 name={input.name}

 {...input}

 value={newCar[input.name]}

 onChange={onChange}

 required />

))}

Creating our Frontend with React 151

 <button type="submit"

 onClick={handleSubmit}>Insert</button>

 <button type="reset"

 onClick={handleReset}>Reset</button>

 </form>

 </div>

 </Layout>

)

}

Again, I have removed the Tailwind classes and started the file with just a simple title. After the title,
I displayed the newCar object in its stringified version so that we can monitor its state and how it
reacts to updates. After the newCar object, I display the errors array – you must submit the form
with some errors in order to see them.

Finally, there is a form – the only interesting part is probably the mapping over the inputs array and
the destructuring of values passed to its elements. This is what the page should look like:

Figure 6.2 – The Insert a New Car page

Try to play around with the form and customize it using some prettier Tailwind class combinations.

Building the Frontend of the Application152

Creating the car details and the update/delete page

The bulk of the work is done – we are able to create new cars and list them. I will now create the
details page, a page component that will be used to display just one vehicle. It will not be particularly
content-rich, since we have only five fields in our model and they easily fit inside the card. Imagine,
however, that we had dozens of fields representing car features: color, type of engine, overall state,
insurance, and maybe the location. Well, all of those fields would be displayed on the details page.
Since I want to keep this very simple, I am going to add the update and delete actions to this page –
without creating a dedicated React route for an edit-car page.

This /car/:id page will thus serve three purposes: it will display the car details, covering the
get/:id route, but will also host two simple buttons – one for updating the price of the car (although
we could add and edit any of the fields) and one for permanently deleting the car. For simplicity’s sake,
I will not create a pop-up or modal window that you would typically want to have when destroying
resources. The purpose of the chapter is only to create a CRUD application, and this is precisely what
we’re doing here. Let’s crack open the src/pages/Car.jsx file and have a look at it. The imports
are the following:

import {useState, useEffect} from 'react'

import {useParams, useNavigate} from "react-router-dom"

import Layout from '../components/Layout'

import FormInput from '../components/FormInput'

By now, you have already become a React connoisseur, so you know that we are using useEffect
and useState to fetch the individual car data and manage its state, while the React Router imports
are for catching the id of the car and for navigating away programmatically. Finally, you have already
seen the Layout component and the FormInput component as I have used them in the /new
route. Let’s take a look at the first part of the functional component:

const Car = () => {

 const {id} = useParams()

 const navigate = useNavigate()

 const [car, setCar] = useState(null)

 const [price, setPrice] = useState(null)

 const [error, setError] = useState([])

 const [isPending, setIsPending] = useState(true)

 …

Creating our Frontend with React 153

Apart from using the useParams() to capture the ID of the specific car and instantiating the
navigation using the useNavigate hook, I set up no less than four state variables: the car (we are
going to get it by using the ID), the price – the only editable property of the car, and the two helper
states that we have already seen – the error (which is really an array of errors) and the isPending
flag, for making sure that we have finished fetching. Let’s see the rest of the components:

(continued)

const onChange = (event)=>{

 setPrice(event.target.value)

 }

const getCar = async() => {

 const res = await fetch('http://localhost:8000/cars/'+id)

 if (!res.ok){

 setError("Error fetching car")

 } else {

 const data = await res.json()

 setCar(data)

 setPrice(data.price)

 }

 setIsPending(false)

 }

The onChange handler is just for setting the new price of the car when we need to adjust it, while
the bulk is contained in the getCar function. The dynamic is identical to what we have already done
to get all of the cars: I make a fetch request using the ID of the desired car that the router was kind
enough to provide me with and then I check the response – if it is OK (in the 200-299 range), I set the
car state variable to the obtained car data, and populate the price variable – the variable that is the
value of the input field – to the current price. In case of errors, I populate the error with a message.
At the end, I remove the isPending flag.

Now we’ll move on to the delete and update handlers, which will make HTTP requests to our DELETE
and PATCH FastAPI endpoints:

const handleDelete = async () => {

const response = await fetch(`http://localhost:8000/
cars/${id}`,{

 method:"DELETE",

 headers:{

 'Content-Type':'application/json'

 }

Building the Frontend of the Application154

 })

 if(!response.ok) {

 const data = await response.json()

 let errArray = data.detail.map(el=>{

 return `${el.loc[1]} -${el.msg}`

 })

 setError(errArray)

 } else {

 setError([])

 navigate("/cars")

 }

 }

By this point, all of this code should be second nature to you, although I admit that it is not very
elegant: I simply issue a DELETE request to the /cars/id endpoint and check for any errors. Since
it is a DELETE request, remember that we do not actually expect anything in the response, so there is
really no point in trying to get it or parse it – I just want the HTTP status code. If the response code
is OK, I use navigate() to go to the desired page, using the power of React Router. Updating the
car is very similar:

const updatePrice = async () => {

 const response = await fetch(`http://localhost:8000/
cars/${id}`,{

 method:"PATCH",

 headers:{

 'Content-Type':'application/json'

 },

 body: JSON.stringify({price})

 })

 const data = await response.json()

 if(!response.ok) {

 let errArray = data.detail.map(el=>{

 return `${el.loc[1]} -${el.msg}`

 })

 setError(errArray)

 } else {

 setError([])

Creating our Frontend with React 155

 getCar()

 }

 }

The interesting part of this chunk of code is that we send a PATCH request, knowing that our smart
FastAPI backend will know to only update the provided field – the price. After the usual error checking
routine, if everything is OK, then we make a new call to the getCar function – that way, the UI (our
page) gets updated with the new data – the new price. The useEffect call is as follows:

useEffect(()=>{

 getCar()

},[])

The component’s JSX is full of Tailwind classes, and, in this case, I want to leave them so you can get
a feel for what they achieve.

The first part of the return statement is used to check whether the isPending state variable is
equal to true and then to display a div with a notification. This should probably contain a spinner or
something more intuitive, but a red background will do for now. If there are errors in the error array,
they will be iterated over and displayed in an unordered list with minimal styling:

return (

 <Layout>

 {isPending && <div className="bg-red-500 w-full

 text-white h-10 text-lg">

 <h2>Loading car...</h2>

 </div>}

 {error && <ul className="flex flex-col mx-auto

 text-center">

 { error && error.map(

 (el, index)=>(

 <li key={index} className="my-2 p-1

 border-2 border-red-700 max-w-md mx-

 auto">{el}

)

)

 }

 }

Building the Frontend of the Application156

The part that follows directly in the same function outputs the selected car data: the brand and make,
there is an image placeholder, and there is a div for displaying the Price, Year, and Km variables:

{car&&<div>

 <div className="flex flex-col justify-between min-h-full

 items-center">

 <div className="font-bold text-xl text-gray-600 my-3">

 {car.brand} {car.make}

 </div>

 <div className="max-w-xl">

 <img alt="A car!" src="https://via.placeholder.com

 /960x550.png?text=IMAGINE+A+CAR!" />

 </div>

 <div className="flex flex-col items-center font-normal

 text-lg">

 <div>Price: <span className="font-semibold text-

 orange-600 text-xl">{car.price}</div>

 <div>Year: {car.year}</div>

 <div>Km: {car.km}</div>

 </div>

Finally, I just added a simple form input for updating the price and a couple of buttons – the first will
update the price of the car to the value of the input and the second one will trigger a DELETE request:

<div className="flex flex-row">

 <FormInput label='change price'

 placeholder={price}

 type="number"

 value={price}

 onChange={onChange}

 required />

<button

 onClick={updatePrice}

 className="bg-yellow-500 text-white p-2 rounded-md m-3

 transition-opacity hover:opacity-80">

 Edit price

</button>

<button

 onClick={handleDelete}

Creating our Frontend with React 157

 className="bg-red-700 text-white p-2 rounded-md m-3

 transition-opacity hover:opacity-80">

 Delete Car

</button>

</div>

<p>Warning: deleting is permanent!</p>

 </div>

 </div>}

 </Layout>

)

}

export default Car

Instead of describing what the JSX does, I believe that it is easier to take a look at the screenshot of
the generated page:

Figure 6.3 – The single car page with update and delete buttons

Apart from the Layout component that “includes” the menu and the footer, I just display the car
data, along with the input for updating the price and two buttons, connected to our handlers for
updating and deleting.

Building the Frontend of the Application158

The application that you just created is pretty ugly, although Tailwind manages to hold it together. A
person running this app locally on their laptop can insert new cars as they are arriving to be sold, can
delete them, and can update their price. That is a very crude CRUD application (pun intended!) but it
meets our initial goal and I hope that it sheds some light on the mechanism of connecting MongoDB,
FastAPI, and React.

Once you get the hang of making HTTP requests to the backend and using Hooks to map the response
data to UI elements, you will have web developer superpowers and almost unlimited flexibility at
your fingertips. Meeting new requirements and implementing new features with the FARM stack is,
I firmly believe, much easier than with other framework stacks.

The application that we have built together in this chapter is far from being production-ready – even
for an intranet app locally run on an old laptop that is supposed to just get the job done. But hey! You
made a full-stack application:

• You have defined some pydantic models and defined rules for data validation, ensuring data
integrity and validity.

• You have created a MongoDB Atlas online database (for free!) and connected it in an efficient
manner to your FastAPI backend using a modern async Python driver (Motor).

• You have crafted several endpoints for your application. You are able to create, read, list, update,
and delete entities – in this case, cars, but this approach is very easy to generalize and apply to
practically any type of data that can fit in your MongoDB database (and that’s a lot!).

• You have created a React application using the CRA tool and made use of the latest features,
React Router 6 and Hooks, in order to scaffold your components and pages and make sure that
the data from FastAPI flows precisely the way you want it to.

The application that we have built is not going to be deployed to an online server or service, since it
doesn’t really meet any basic requirements, but we will tackle that in the next chapter. I want to make
our app a bit more realistic and add users to it. And with users flying around, that means that we will
have to talk about authentication and authorization.

Summary
We have managed to create a very rudimentary React single-page application and we connected it to
our FastAPI backend. Our app is able to display cars, edit their price, and delete cars from MongoDB,
so we can safely say that we have achieved the initial goal – we have CRUD functionality.

This application is not only a kind of proof-of-concept, but it is also completely unusable for any kind
of work: our API is not protected in any way and anyone with the URL of our endpoint can begin
issuing requests, inserting fake cars, or editing and deleting existing ones! We could, of course, run
MongoDB on our own local computer, but that would kind of defy the purpose of this book.

In the next chapter, we will introduce the basic ideas and concepts of authentication and authorization
and we will explore ways in which we can make our FARM stack apps secure and usable.

7
Authentication and

Authorization

The concept of authentication (proving that the user is who they claim to be) and authorization
(making sure that the authenticated user should or should not be able to perform certain operations
on our API) is very complex, and several good (and thick) books are dedicated to it. In this chapter,
we will explore the topics of authentication and authorization from a very practical standpoint and
from our FARM-stack perspective.

We will begin with a very simple yet robust and extensible setup for our FastAPI backend, based on
JWT – arguably the most popular authentication method in the last couple of years. Then, we will
see how to integrate our JWT-based authentication methods into React, leveraging some of React’s
coolest and newest features – namely Hooks, Context, and React Router.

The topics we will cover in this chapter are the following:

• The user model and how it relates to our other resources

• A brief overview of the JWT authentication mechanism – the big picture

• An overview of the authentication and authorization tools that FastAPI has to offer

• How to protect our routes, routers, or the entire app

• Various solutions for authenticating with React

By the end of this chapter, you should have a solid grasp of authentication methods that both FastAPI
on the backend and React on the frontend have to offer, and you will be able to authenticate users and
control what they can and cannot do within your application with granularity and precision.

Authentication and Authorization160

Technical requirements
To run the sample application in this chapter, you should have both Node.js and Python installed on
your local computer. The requirements are identical to those in the previous chapter, and the new
packages that we will install will be pointed out. You should have a newer Python installation (version
3.6 or newer) and Node.js installation (version 14 or more). Your computer should be able to handle
a couple of Visual Studio Code instances open at the same time, along with a couple of terminals and
maybe a dozen browser tabs.

Understanding JSON Web Token – our key to security
HTTP is a stateless protocol, and that fact alone implies several important consequences. One of
them is that if we want to persist some kind of state between requests, we must resort to a mechanism
that will be able to remember who the logged-in user was, what the selected cars during a previous
browser session were, or what the site preferences were.

Broadly speaking, there are many strategies that we can employ when performing authentication.
Credential-based authentication requires the user to enter some personal credentials, usually a username
or an email and a password. A new method that has gained some traction over the last years is the
concept of a passwordless login – once the user creates an account, they are emailed a magic link that
is used for authenticating a session, without the need to type (and remember!) passwords. Biometric
passwords use some bio-feature of the user, such as a fingerprint, while social authentications use the
user’s account on social networks (Google, Facebook, or LinkedIn) to associate the user with their
account. In this chapter, we will consider a classic personal credentials method – when a user registers,
they get to provide an email and choose a password and, optionally, a username.

While there are different ways of maintaining the identity of a user across different parts of an app,
JSON Web Token (JWT) is arguably the most common and popular method of connecting frontend
applications (React, Vue.js, and Angular) or mobile apps with an API (in our case, a REST API).
JWT is nothing but a standard – a way of structuring a big string composed of seemingly random
characters and numbers.

JWT contains three parts – the header, the payload, and the signature. The header hosts metadata
about the token itself: the algorithm used for signing the token and the type of the token.

The payload is the most interesting part. It contains the data (claims): the ID of the user (or the
username) and the Issued at (iat) field, the date and time of issuing the token, the expiry (the time at
which the token ceases to be valid), and optionally, other fields. The payload is decodable and readable
by everyone. There is a very useful site – https://jwt.io – that enables us to play with tokens
and see how they look.

https://jwt.io

FastAPI backend with users and relationships 161

Finally, probably the most important part of the token is the signature – the part of the token that
guarantees the claims made by the token, so to speak. The signature is reproduced (calculated) and
compared with the original, thus preventing the modification of the claims. Put simply, if a JWT token
which can be easily “read,” claims that the username is John, we could tamper with it and modify the
username to be Rita, but by doing so, we would alter the signature, which wouldn’t match anymore,
rendering the said token invalid. It is really a simple yet ingenious mechanism if you think about it.

The token is hence able to completely replace the authentication data – user or email and password
combinations that do not need to go flying over the wire more than once.

In this section, we have learned what JWT is, what the logic behind it is, and why you might want
to resort to it for your authentication and authorization system. In the forthcoming sections, we will
address how to implement a JSON Web Token – based authentication flow in our app.

FastAPI backend with users and relationships
Web applications (or mobile apps, for that matter) are not very useful if they are not secure –
we keep hearing about tiny errors in the authentication implementations that ended up with
hundreds of thousands or even millions of compromised accounts that might include sensitive
and valuable information.

FastAPI is based on OpenAPI – previously known as Swagger – an open specification for crafting APIs.
As such, OpenAPI enables us to define various security schemes, compatible with the various protocols
(apiKey, http, oauth2, openIdConnect, and so on). While the FastAPI documentation
website provides an excellent and detailed tutorial on creating an authentication flow, it is based on
the oauth2 protocol, which uses form data for sending the credentials (username and password).

There are literally dozens of ways you could implement some type of security for your API, but what
I really want to accomplish in this chapter is just to give you an idea of what the viable options are
and to create a simple authentication system based on JWT and JSON as the transport mechanism, a
workflow that is easily extendable to fit your future needs, and one that provides just enough moving
parts to be able to see the mechanism itself. In the following sections, we will devise a simple user
model that will enable us to have an authentication flow. We will then learn how to encode the user
data into a JWT token and how to require the token for accessing the protected routes.

Creating a User model and MongoDB relationships

In order to be able to even discuss the concepts of authenticating users, we have to introduce the
entity of users to our app – up until now, we have only seen how to perform CRUD operations on a
single entity (cars). A real application will probably have at least a couple of models, and the user’s
model is certainly going to be mandatory. While you could store various data in the user’s model, it
really depends on your needs; for a small application, a couple of fields will suffice – an email and/or
username, a password, maybe some role (regular user, admin, or editor), and so on. For a publishing
platform, you would want to add a short bio, maybe an image, and so on.

Authentication and Authorization162

Modeling data with MongoDB is inherently different from modeling relational databases, as discussed
in Chapter 2, Setting Up the Document Store with MongoDB, and the driving idea is to think of queries
upfront and model your relationships, taking into account the queries that your app is going to be
making most frequently.

First of all, what are our requirements? Well, our stakeholders are quite happy with the previous CRUD
application, and eventually, they want to turn it into a public website – the cars should be displayed for
potential customers, while the pages for inserting new cars and updating or deleting the existing ones
should be protected. Two types of users are envisioned for the moment: salespersons – employees that
can insert new cars and edit and delete “their” own cars (that is, the company cars for which they are
responsible), and admins – a couple of managers who will oversee the whole process and who should
be able to perform all the operations, regardless of whose entity it is. In order to keep things as simple
as possible, I will make a simple reference-based model; the car will simply have an additional field –
such as a foreign key – with the ID of the user, very similar to a relational database model. We could
embed a list of all the users’ cars into the user model, but in this app, this will be more than enough.

Let’s begin with the models of our application. We should probably apply the same structure as we
did for the routers – create a /models directory and two files (users.py and cars.py) – but in
order to keep the project as simple as possible, I am going to put them together in a single models.
py file. This should be avoided in cases where you have more than two models!

Let’s begin with main.py, the entry point of our application, which will be very similar to the one
used in the previous chapter:

from decouple import config

from fastapi import FastAPI

from fastapi.middleware.cors import CORSMiddleware

from motor.motor_asyncio import AsyncIOMotorClient

from routers.cars import router as cars_router

from routers.users import router as users_router

DB_URL = config('DB_URL', cast=str)

DB_NAME = config('DB_NAME', cast=str)

I have just added a new router – the one that we will be creating right now:

origins = [

 "*"

]

app = FastAPI()

app.add_middleware(

 CORSMiddleware,

FastAPI backend with users and relationships 163

 allow_origins=origins,

 allow_credentials=True,

 allow_methods=["*"],

 allow_headers=["*"]

)

@app.on_event("startup")

async def startup_db_client():

 app.mongodb_client = AsyncIOMotorClient(DB_URL)

 app.mongodb = app.mongodb_client[DB_NAME]

@app.on_event("shutdown")

async def shutdown_db_client():

 app.mongodb_client.close()

app.include_router(cars_router, prefix="/cars", tags=["cars"])

app.include_router(users_router, prefix="/users",
tags=["users"])

The main.py file is practically unaltered, and that is one of the benefits of having a modular structure
for our app. We just mounted the additional /users router, while maintaining the same logic –
connect the database client on startup, disconnect on shutdown, and load the database variables
using decouple.

Let’s create our models.py file now. The following code is almost identical to the one we wrote for
our CRUD app in Chapter 5, Building the Backend for Our Application – we declare the imports and
create MongoBaseModel in order to flatten ObjectId into a string:

from enum import Enum

from bson import ObjectId

from typing import Optional

from pydantic import EmailStr, Field, BaseModel, validator

from email_validator import validate_email, EmailNotValidError

We imported the email_validator package that is needed for, well, email validation:

class PyObjectId(ObjectId):

 @classmethod

 def __get_validators__(cls):

 yield cls.validate

Authentication and Authorization164

 @classmethod

 def validate(cls, v):

 if not ObjectId.is_valid(v):

 raise ValueError("Invalid objectid")

 return ObjectId(v)

 @classmethod

 def __modify_schema__(cls, field_schema):

 field_schema.update(type="string")

class MongoBaseModel(BaseModel):

 id: PyObjectId = Field(default_factory=PyObjectId,

 alias="_id")

 class Config:

 json_encoders = {ObjectId: str}

Notice that we imported the email validator package since it is not part of Pydantic – you should
install it with the following:

pip install email-validator

It is a package needed for Pydantic to validate the email addresses since we want to require a valid
email address when the user registers. Although I will not implement a client-side registration flow
in this chapter, I will create the user creation route, and it will require a valid email address. Who
knows, maybe the owner of the company decides to introduce user accounts for customers later on?

On to the same file, models.py, and to the actual user model. We are defining two roles – a salesperson
and an admin – and a very basic user model containing only the username, email, password, and role
fields. Since the email field is the only one that cannot be directly validated from Pydantic, we add a
simple validation method by using the email validator package. It is really simple – it just returns an
error if the value provided isn’t a valid email:

class Role(str, Enum):

 SALESPERSON = "SALESPERSON"

 ADMIN = "ADMIN"

class UserBase(MongoBaseModel):

 username: str = Field(..., min_length=3, max_length=15)

 email: str = Field(...)

FastAPI backend with users and relationships 165

 password: str = Field(...)

 role: Role

 @validator("email")

 def valid_email(cls, v):

 try:

 email = validate_email(v).email

 return email

 except EmailNotValidError as e:

 raise EmailNotValidError

Since we have already seen how Pydantic handles validation, this should be pretty self-explanatory. I
defined two roles – a salesperson and an admin – and the users must fit into one of these two roles.
We are now ready to define our user model and a couple of helper models:

class UserBase(MongoBaseModel):

 username: str = Field(..., min_length=3, max_length=15)

 email: str = EmailStr(...)

 password: str = Field(...)

 role: Role

 @validator("email")

 def valid_email(cls, v):

 try:

 email = validate_email(v).email

 return email

 except EmailNotValidError as e:

 raise EmailNotValidError

class LoginBase(BaseModel):

 email: str = EmailStr(...)

 password: str = Field(...)

class CurrentUser(BaseModel):

 email: str = EmailStr(...)

 username: str = Field(...)

 role: str = Field(...)

Authentication and Authorization166

UserModel is simple enough: we require a username with a length between 3 and 15 characters,
a valid email address, a password, and a role. I have added two additional models: LoginBase for
the login route, and CurrentUser, which contains the data that we will extract from the model
when we want to check who is currently making the requests. Moving on to the Cars model that I
decided to put in the same models.py file, little has changed:

class CarBase(MongoBaseModel):

 brand: str = Field(..., min_length=3)

 make: str = Field(..., min_length=1)

 year: int = Field(..., gt=1975, lt=2023)

 price: int = Field(...)

 km: int = Field(...)

 cm3: int = Field(..., gt=600, lt=8000)

class CarDB(CarBase):

 owner: str = Field(...)

class CarUpdate(MongoBaseModel):

 price: Optional[int] = None

The base model is intact, with all the features that we had earlier (mileage, year of production, and
so on). I have just added a new model, called CarDB, which extends the CarBase model and adds
an owner field – that is, id of the user assigned to the car, and since we converted all our MongoDB
ObjectIds to strings, it is a string as well. The CarUpdate model contains only the optional
price update.

It is important to point out that this model is a great oversimplification of a real system. We would
probably want to add a list of car IDs as a field in the User model, we would have a bunch of DateTime
fields denoting the moment when the car was put up for sale, sold, reserved, and so on. However, in
this chapter, I only want to implement a rather simple JWT-based authentication system and keep
only the bare minimum functionality needed in order to have a working mechanism.

On to the authentication file, aptly called authentication.py. Let’s quickly go over the requirements
of our authentication mechanism:

• Once the user submits the registration form and sends us their password, the password should
be hashed and only then inserted into the database

• We should have a function ready to compare this stored password hash with the subsequent
passwords submitted during the login phase in order to verify whether they match

• We should be able to create/encode JWT tokens and decode them with a custom expiry time
and with a payload containing the user ID

FastAPI backend with users and relationships 167

• Finally, we should have a function that accepts the request through dependency injection
and returns either the ID of the user making the request or a message such as invalid token or
token expired

The following mechanism is inspired and adapted from a YouTube video (https://www.youtube.
com/watch?v=xZnOoO3ImSY), which offers an alternative and simpler approach than the one
proposed in the FastAPI documentation.

Let’s begin building our authentication.py file. First, we need to install a couple of libraries
needed for the JWT authentication mechanism. Pyjwt is a library for encoding and decoding
JWTs, while passlib is a library for hashing strings. Stop your FastAPI server and, in the active
environment, insert the following command:

pip install pyjwt passlib['bcrypt']

Now we are ready to declare our imports in the authentication.py file as follows:

import jwt

from fastapi import HTTPException, Security

from fastapi.security import HTTPAuthorizationCredentials,
HTTPBearer

from passlib.context import CryptContext

from datetime import datetime, timedelta

As we said earlier, jwt is here to enable us to encode and decode JWTs, while FastAPI provides us with
the bulk of the needed functionality. HTTPException is going to take care of cases in which the token
is not valid – effectively turning exceptions in code into valid HTTP responses – while Security
is used for authorization and for highlighting routes that will need a user to be authenticated in the
automatic documentation. HTTPBearer is a FastAPI class ensuring that the HTTP request has the
appropriate authentication header, while HTTPAuthorizationCredentials is the object type
returned from the dependency injection.

CryptContext is used for creating a context for hashing passwords and it lives under passlib.
context. Finally, we imported some datetime utilities for signing the token and giving it the
desired expiry date.

After having declared our imports, it is time to create a class I will call Authorization, which will
expose methods responsible for all the needed authentication steps:

class Authorization():

 security = HTTPBearer()

 pwd_context = CryptContext(schemes=["bcrypt"],

 deprecated="auto")

 secret = 'FARMSTACKsecretString'

https://www.youtube.com/watch?v=xZnOoO3ImSY
https://www.youtube.com/watch?v=xZnOoO3ImSY

Authentication and Authorization168

We are instantiating FastAPI’s simplest authentication – HTTPBearer – and creating a password
context with CryptContext, using the bcrypt algorithm. We also need a secret string that could
be generated automatically for increased security. Next, we will take care of hashing the password:

 def get_password_hash(self, password):

 return self.pwd_context.hash(password)

 def verify_password(self, plain_password, hashed_password):

 return self.pwd_context.verify(plain_password, hashed_

 password)

These rather simple functions ensure that the user’s password is hashed and that it can be verified by
comparing it to the plain text version. The second function returns a simple true or false value. We
are now at the heart of the class – creating the JWT:

 def encode_token(self, user_id):

 payload = {

 'exp': datetime.utcnow() + timedelta(days=0,
minutes=35),

 'iat': datetime.utcnow(),

 'sub': user_id

 }

 return jwt.encode(

 payload,

 self.secret,

 algorithm='HS256'

)

The preceding function does the bulk of the work – it takes user_id as the sole parameter and puts
it in the sub section of the payload. Bear in mind that we could encode more information in the
JWT – the user’s role or username for instance. In that case, the sub section would have a structure
of a dictionary and the JWT would be considerably longer. The expiry time is set to 35 minutes, while
issued at time is set to the moment of JWT creation. Finally, the function uses the jwt.
encode method to encode the token. We provide the algorithm (HS256) and a secret as arguments.

The decode part of the class is very similar; we just reverse the process and provide exceptions in case
they are needed:

 def decode_token(self, token):

 try:

 payload = jwt.decode(token, self.secret,

FastAPI backend with users and relationships 169

algorithms=['HS256'])

 return payload['sub']

 except jwt.ExpiredSignatureError:

 raise HTTPException(status_code=401,
detail='Signature has expired')

 except jwt.InvalidTokenError as e:

 raise HTTPException(status_code=401,
detail='Invalid token')

The decode_token function returns just the sub part of the token – in our case, the user’s ID –
while we provide appropriate exceptions in case the token is not valid or if it has expired. Finally, we
create our auth_wrapper function that will be used for dependency injection in the routes. If the
function returns the user’s ID, the route will be accessible; otherwise, we will get HTTPException:

 def auth_wrapper(self, auth: HTTPAuthorizationCredentials =
Security(security)):

 return self.decode_token(auth.credentials)

The authorization.py file is under 40 lines long but packs quite a punch – it enables us to protect
routes by leveraging the excellent FastAPI’s dependency injection mechanism.

Let’s dive into the users router and put our authentication logic to the test. In the routers folder,
create a users.py file and begin with the imports and class instantiations:

from fastapi import APIRouter, Request, Body, status,
HTTPException, Depends

from fastapi.encoders import jsonable_encoder

from fastapi.responses import JSONResponse

from models import UserBase, LoginBase, CurrentUser

from authentication import AuthHandler

router = APIRouter()

auth_handler = AuthHandler()

After the standard FastAPI imports, including jsonable_encoder and JSONResponse, we
import our user models and the AuthHandler class from authorization.py. We then proceed
to create the router that will be responsible for all the user’s routes and an instance of AuthHandler.
Let’s begin with a registration route, so we can create some users and test them with a REST client:

@router.post("/register", response_description="Register user")

async def register(request: Request, newUser: UserBase =

Authentication and Authorization170

Body(...)) -> UserBase:

 newUser.password = auth_handler.get_password_hash(newUser.

 password)

 newUser = jsonable_encoder(newUser)

The register route, which will be available at the /users/register URL, takes in a request and
a newUser instance, modeled by Pydantic’s UserBase class, through the body of the request. The
first thing that we do is replace the password with the hashed password and convert the Pydantic
model into a jsonable_encoder instance.

Now, we perform the standard registration checks – the email and the username should be
available; otherwise, we throw an exception, notifying the user that the username or password
has already been taken:

 if (

 existing_email := await request.app.mongodb["users"].

 find_one({"email": newUser["email"]}) is not None):

 raise HTTPException(

 status_code=409, detail=f"User with email

 {newUser['email']} already exists"

)

 if (

 existing_username := await request.app.mongodb["users"]

 .find_one({"username": newUser["username"]}) is not

 None):

 raise HTTPException(

 status_code=409, detail=f"User with username

 {newUser['username']} already exists",

)

The previous functions could and should be refactored to allow for further checks, but I want them
to be as explicit as possible. The final part of the function is trivial; we just need to insert the user into
MongoDB! You can see this in the following code:

 user = await request.app.mongodb["users"].insert_

 one(newUser)

 created_user = await request.app.mongodb["users"].find_one(

 {"_id": user.inserted_id}

)

FastAPI backend with users and relationships 171

 return JSONResponse(status_code=status.HTTP_201_CREATED,

 content=created_user)

We return the standard 201 CREATED status code, and we are now ready to perform some basic
tests using HTTPie, our command-line REST client. Let’s try and create a user as follows:

(venv) λ http POST 127.0.0.1:8000/users/register
username="bill" password="bill" role="ADMIN" email="koko@gmail.

 com"

{

 "_id": "629333d7e33842d9499e6ac7",

 "email": "koko@gmail.com",

 "password": "$2b$12$HKGcr5CnxV7coSMgx41gRu34Q11Qb.

 m5XZHlX1tslH8ppqlVB2oJK",

 "role": "ADMIN",

 "username": "bill"

}

We get a new user with a hashed password, a role, and _id. Of course, we wouldn’t want to send the
password back to the user, even if it is hashed, but you already have the knowledge to create a new
Pydantic model that returns all the fields except the password. Let’s move on to the login route – it is
very similar to what you might have already used with Flask or Express.js. We receive the email and
password (we could have opted for a username) and, first, we try to find the user by email. After that,
we compare the password with our hashing function:

@router.post("/login", response_description="Login user")

async def login(request: Request, loginUser: LoginBase =
Body(...)) -> str:

 user = await request.app.mongodb["users"].find_

 one({"email": loginUser.email})

 if (user is None) or (

 not auth_handler.verify_password(loginUser.password,

 user["password"])

):

 raise HTTPException(status_code=401, detail="Invalid

 email and/or password")

 token = auth_handler.encode_token(user["_id"])

 response = JSONResponse(content={"token": token})

 return response

Authentication and Authorization172

If the user exists and the password passes the hash verification, we create a token and return it as a
JSON response. This precious token will then be responsible for authentication all over our app and
it will be the only data that needs to be sent to the server with every request. We can test the login
route as well by hitting the /users/login route with the appropriate credentials:

λ http POST http://127.0.0.1:8000/users/login email="tanja@
gmail.com" password="tanja"

HTTP/1.1 200 OK

content-length: 184

content-type: application/json

date: Wed, 01 Jun 2022 20:13:32 GMT

server: uvicorn

{

 "token": "eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.

eyJleHAiOjE2NTQxMTY1MTMsImlhdCI6MTY1NDExNDQxMywic3

ViIjoiNjI4OTQyODU3YTBjYmZlNGE2MzQwNDdkIn0.v1FTBM0wIlDKUw_
VVCJlsSItM58sDzDnwGbzyDKs_pc"

}

We got the token back! If you want, you can try the same route with the wrong username/password
combination and check the response.

We will need one final route in the users router: the /me route. This route is not supposed to be
called directly and generate a page, only to be used as a helper – a way of verifying the currently logged
user making the request. The /me route should not accept any parameters except the authentication
dependency – the perfect opportunity to test our authentication wrapper:

@router.get("/me", response_description="Logged in user data")

async def me(request: Request, userId=Depends(auth_handler.
auth_wrapper)):

 currentUser = await request.app.mongodb["users"].find_

 one({"_id": userId})

 result = CurrentUser(**currentUser).dict()

 result["id"] = userId

 return JSONResponse(status_code=status.HTTP_200_OK,

 content=result)

This route is pretty simple: if the provided token is valid and not expired, auth_wrapper will return
userId – the ID of the user making the request. Otherwise, it will return an HTTP exception. In
this route, I have added a database call in order to retrieve the desired data about the user, according
to the CurrentUser model.

FastAPI backend with users and relationships 173

We could have encoded all this data in the token and avoided the trip to the database, but I wanted
to leave the JWT as thin as possible.

Now, we can test the /me route. First, let’s log in with our previously registered user:

(venv) λ http POST 127.0.0.1:8000/users/login password="bill"
email="koko@gmail.com"

HTTP/1.1 200 OK

{

 "token": "eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJleHAiOj

E2NTM4Mzk1NTksImlhdCI6MTY1MzgzNzQ1OSwic3ViIjoiNjI5MzMzZDdlMzM

4NDJkOTQ5OWU2YWM3In0.
ajpoftEFBWcfn2XClJqPDNcJMaS6OujZpaU8bCv0BNE"

}

Copy this token and provide it to the /me route:

(venv) λ http GET 127.0.0.1:8000/users/me "Authorization:
Bearer eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJleHAiOj

E2NTM4Mzk1NTksImlhdCI6MTY1MzgzNzQ1OSwic3ViIjoiNjI5MzMzZDdlMzM4

NDJkOTQ5OWU2YWM3In0.
ajpoftEFBWcfn2XClJqPDNcJMaS6OujZpaU8bCv0BNE"

HTTP/1.1 200 OK

{

 "email": "koko@gmail.com",

 "id": "629333d7e33842d9499e6ac7",

 "role": "ADMIN",

 "username": "bill"

}

If you test the route without the bearer token, you will get a Not Authenticated error and you
will be back at square one.

Finally, I will show how to insert the authentication dependency into the /cars router (or really,
any other router that you might need to create). Since it will be a pretty long file, I will not explain all
of it – I will rather focus on the logic used to perform authentication and authorization on a couple
of routes, while the entire file is available in the book’s GitHub repository. Let’s see the imports for
the /cars router:

from typing import List, Optional

from fastapi import APIRouter, Request, Body, status,

Authentication and Authorization174

HTTPException, Depends

from fastapi.encoders import jsonable_encoder

from fastapi.responses import JSONResponse

from models import CarBase, CarDB, CarUpdate

from authentication import AuthHandler

router = APIRouter()

auth_handler = AuthHandler()

This part is almost identical to the users router – we import our Pydantic models and instantiate
the router and the authentication handler class.

Our Pydantic cars model has changed; now it has something called owner, basically just the ID of
the user that is supposed to sell the car. We will provide this information to the database through our
authentication dependency injection. When the user attempts to insert a new instance of the entity
(a car), they will have to be authenticated in order to proceed. If they are authenticated, we will just
take their ID and set it as the owner field value:

@router.post("/", response_description="Add new car")

async def create_car(

 request: Request,

 car: CarBase = Body(...),

 userId=Depends(auth_handler.auth_wrapper),

):

 car = jsonable_encoder(car)

 car["owner"] = userId

 new_car = await request.app.mongodb["cars2"].insert_

 one(car)

 created_car = await request.app.mongodb["cars2"].find_one(

 {"_id": new_car.inserted_id}

)

 return JSONResponse(status_code=status.HTTP_201_CREATED,

 content=created_car)

The simplest case would be the path corresponding to GET /cars – a route that would list all available
cars, with some pagination implemented through query strings. Let’s say that we want only logged
users (so salespersons or admins) to access this route.

FastAPI backend with users and relationships 175

All we need to do is inject the authentication wrapper into the dependency, and FastAPI has only
two choices: either the token is valid and fresh and we get a user, or HTTPException is raised; it is
really as simple as that. So, let’s create our route for listing cars – we’re assuming that only registered
users can access this route:

@router.get("/", response_description="List all cars")

async def list_all_cars(

 request: Request,

 min_price: int = 0,

 max_price: int = 100000,

 brand: Optional[str] = None,

 page: int = 1,

 userId=Depends(auth_handler.auth_wrapper),

) -> List[CarDB]:

 RESULTS_PER_PAGE = 25

 skip = (page - 1) * RESULTS_PER_PAGE

 query = {"price": {"$lt": max_price, "$gt": min_price}}

 if brand:

 query["brand"] = brand

 full_query = (

 request.app.mongodb["cars2"]

 .find(query)

 .sort("_id", -1)

 .skip(skip)

 .limit(RESULTS_PER_PAGE)

)

 results = [CarDB(**raw_car) async for raw_car in full_

 query]

 return results

While the whole function performs some pagination (25 hardcoded results per page) and has some
nifty options for filtering by price and by brand, the gist of authentication logic is in the bold line.
Also, please note that I have created a separate MongoDB collection and named it cars2, just to
differentiate it from the collection used in the previous chapter, while using the same database.

Authentication and Authorization176

Finally, let’s examine the route for editing a car (just the price, in our case). We want only the owner of
the car to be able to edit the price and, additionally, any admin can also step in and update the price.
For this case, it would have been wise if we had encoded the role of the user as well in the JWT, as it
would save us a trip to the database, but I just want to make you aware of some decisions and trade-
offs that you are bound to make during the development of the API:

@router.patch("/{id}", response_description="Update car")

async def update_task(

 id: str,

 request: Request,

 car: CarUpdate = Body(...),

 userId=Depends(auth_handler.auth_wrapper),

):

 user = await request.app.mongodb

 ["users"].find_one({"_id": userId})

 findCar = await request.app.mongodb

 ["cars2"].find_one({"_id": id})

 if (findCar["owner"] != userId) and user["role"] !=

 "ADMIN":

 raise HTTPException(

 status_code=401, detail="Only the owner or an

 admin can update the car"

)

 await request.app.mongodb["cars2"].update_one(

 {"_id": id}, {"$set": car.dict(exclude_unset=True)}

)

 if (car := await request.app.mongodb

 ["cars2"].find_one({"_id": id})) is not None:

 return CarDB(**car)

 raise HTTPException

 (status_code=404, detail=f"Car with {id} not found")

In this route handler, we first get the user making the request, and then we locate the car to be edited.
Finally, we perform a check: if the owner of the car is not the user making the request and this user is not
an admin, we throw an exception. Otherwise, we perform the update. FastAPI’s dependency injection
is a simple and powerful mechanism that really shines in the authentication and authorization domain!

Authenticating the users in React 177

In this section, we have created a simple but efficient authentication system on our FastAPI backend,
we have created a JWT generator and we are able to verify the tokens, we have protected some routes,
and provided the routes needed for creating (registering) new users and logging in. It is now time to
see how things work on the frontend!

Authenticating the users in React
As with the other aspects of security, authentication in React is a huge topic and is beyond the scope of
this book. In this section, I will give you just a very basic mechanism that enables us to have a simple
authentication flow on the client side. Everything will revolve around the JWT and the way we decide
to handle it. In this chapter, we are going to store it just in memory.

The internet and the specialized literature are full of debates on what is the optimal solution for storing
authentication data – in our case, the JWT token. As always, there are pros and cons to each solution
and at the beginning of this section.

Cookies have been around for a very long time – they can store data in key-value pairs in the browser
and they are readable both from the browser and the server. Their popularity coincided with the
classic server-side rendered websites. However, they can store a very limited amount of data, and the
structure of said data has to be very simple.

Localstorage and Session Storage were introduced with HTML5 as a way to address the need for storing
complex data structures in single-page applications, among other things. Their capacity is around 10
MB, depending on the browser’s implementation, compared to 4 KB of cookie capacity. Session storage
data persists through a session, while local storage remains in the browser, even after it is closed and
reopened, until manually deleted. Both can host complex JSON data structures.

Storing JWT in localstorage is nice, it’s easy, and it allows for a great user experience and developer
experience. It is, however, frowned upon since it opens the application to a wide array of vulnerabilities,
since they can be accessed by any client-side JavaScript running in the browser.

The majority of authorities on the subject suggest storing JWT in HTTP – only cookies, cookies that
cannot be accessed through JavaScript and require the frontend and the backend to run on the same
domain. This can be accomplished in different ways, through routing requests, using a proxy, and so
on. Another popular strategy is the use of so-called refresh tokens – we issue one token upon login
and then this token is used to generate other (refresh) tokens automatically, allowing us to mitigate
between security and user experience.

In this section, I will build a very simple and minimalistic React app that will just barely meet the
requirements; some routes and pages should be protected unless the user logs in. I will not persist the
JWT in any way – when the user refreshes the application, they are logged out. Not the most pleasant
user experience, but that is not the issue right now.

Authentication and Authorization178

Let’s proceed step by step. We have our FastAPI backend running, and we are ready to create our
simple frontend:

1. Navigate to your /chapter7 directory and, from the terminal, create a React app:

npx create-react-app frontend

2. Change the directory into the frontend and install Tailwind CSS:

npm install -D tailwindcss postcss@latest autoprefixer

3. Initialize Tailwind with the following command:

npx tailwindcss init -p

4. Now, it is time to edit postcss.config.js:

module.exports = {

 content: [

 "./src/**/*.{js,jsx,ts,tsx}",

],

 theme: {

 extend: {},

 },

 plugins: [],

}

5. Finally, delete everything in the src/index.css file and replace the content with the following:

@tailwind base;

@tailwind components;

@tailwind utilities;

These steps should be familiar by now, but now I want to take the process one step further.
Tailwind has gained in popularity over the last few years, and different UI kits and utilities are
based on the basic Tailwind classes. One of the most popular and usable ones is called DaisyUI
(https://daisyui.com), and we will use it for prototyping our app.

6. The installation process is similar to Tailwind itself. In the terminal, type the following:

npm i daisyui

https://daisyui.com

Authenticating the users in React 179

7. When completed, we need to register daisyui as a Tailwind plugin in tailwind.config.
js as follows:

module.exports = {

 //...

 plugins: [require("daisyui")],

}

8. Finally, delete all the unneeded files (such as App.css and Logo.svg) and reduce your
App.js file to the following in order to test that React has picked up the UI dependencies:

function App() {

 return (

 <div className="App bg-zinc-500 min-h-screen flex

 flex-col justify-center items-center">

 <button class="btn btn-primary">It works!</button>

 </div>

);

}

export default App;

9. Now, we can test the app and see that both Tailwind and DaisyUI are functioning correctly – you
should be able to see a pretty empty page with a styled button. I had to run the following again:

npm install postcss@latest

Maybe by the time you are reading this, the fix will not be necessary anymore.

10. For authentication purposes, we will dive a bit deeper into the React Router 6 and we will take
advantage of some of its new features and components. Stop the terminal process and bravely
install the router:

npm install react-router-dom@6

11. We are going to set the router up in the index.js file as follows:

import React from 'react';

import ReactDOM from 'react-dom/client';

import './index.css';

import {BrowserRouter, Routes, Route} from 'react-router-

 dom'

import App from './App';

const root = ReactDOM.createRoot(document.

Authentication and Authorization180

getElementById('root'));

root.render(

 <React.StrictMode>

 <BrowserRouter>

 <Routes>

 <Route path='/*' element={<App />} />

 </Routes>

 </BrowserRouter>

 </React.StrictMode>

);

We are wrapping everything in the router so that it “covers” the whole application and the
path is a catch-all asterisk (*), while the element that needs to be provided to the router is
the root App.js component. Now comes the tedious part of defining all the possible routes
and components, but again, we are going to use React Router’s new features – nested routes.
Instead of wrapping each and every component into a Layout component – containing the
common web page elements such as navigation or footer – we are going to use the Router’s
Outlet component, which just fills the component with the content of the nested component
that matches the URL pattern.

12. Let’s create a components folder under /src and build generic Header.jsx and Footer.jsx
components, making use of our React ES6 Visual Studio Code extension (by typing _rafce):

const Header = () => {

 return <div>Header</div>;

};

export default Header;

13. Following the exact same procedure, create the following components in the /src/components
folder: Footer, HomePage, Login, and Register, containing just a div returning the
component’s name. Layout.jsx will make use of the nested routing:

import { Outlet } from "react-router-dom";

import Header from "./Header";

import Footer from "./Footer";

const Layout = () => {

 return (

 <div className="App flex flex-col min-h-screen">

 <Header />

Authenticating the users in React 181

 <main className="flex-1 min-h-full flex flex-col

 align-middle justify-center items-center">

 <Outlet />

 </main>

 <Footer />

 </div>

);

};

export default Layout;

The Layout component is simple but very useful: it makes use of the Outlet component
that acts as a high-order component, effectively wrapping the contained routes and adding
the header and the footer. I have made the page full-height using Tailwind’s classes and set the
display to flex. The main section is set to flex-1, to take up all the remaining space.

The App.js file is now updated as follows:

import {Route, Routes} from "react-router-dom"

import Layout from "./components/Layout";

import Login from "./components/Login";

import Register from "./components/Register";

import HomePage from "./components/HomePage";

function App() {

 return (

 <Routes>

 <Route path="/" element={<Layout />}>

 <Route path="/" element={<HomePage />} />

 <Route path="login" element={<Login/>} />

 <Route path="register" element={<Register/>} />

 </Route>

 </Routes>

);

}

export default App;

Authentication and Authorization182

A keen observer will immediately notice that the Route element that uses the Layout component
as the rendering element is not self-closing – it, in fact, encloses all the remaining routes, channeling
them, and in the process, adding the Header and Footer components. Excellent and elegant! You
can manually try to change the URL; navigate to /login or /register or simply / (the root URL
of the React site), and see whether the middle section updates. The router is set up and working. We
will add more routes for the CRUD operations on cars, but they will be protected – the user will have
to provide credentials in the form of a valid JWT token in order to access them (and even if they could
access the React routes, without a token, the operations couldn’t be performed on the backend). It is
time to introduce another React hook – useContext.

Context is a way of solving the problem known as prop-drilling in React when a component that is
located down in the component tree needs to accept props through a series of components – parents
that do not essentially need them. Context is a method of sharing values (strings, numeric values,
lists, and objects) with all the components that are enclosed in a context provider. The useContext
Hook – used to interact with the context – is one of the coolest features of the new Hook-based React,
and something that can handle lots of common design problems.

Using context is a bit particular, not like the useState or useEffect hook, as it involves a bit
more moving parts, but we will use the simplest version, coupled with a custom Hook, for easier access.

The first step is to create a context, using createContext provided by React. This function accepts
default arguments, so you could provide it with, for instance, a dictionary: {username:”Marko”}.
This argument will only be used unless no value is provided otherwise. Even functions for setting or
modifying the context values can be passed to the context – and that is precisely what we are going to
do. We can set up an auth value that will store the logged-in user’s data (if any), but also a setAuth
function, called when the user logs in, that will set the user data. We could also use this function for
logging the user out, by simply setting the context value of auth to a null value.

The second step is to use a context provider – a React component that allows other components to
consume our context. All the consumers that are wrapped inside the provider will re-render once the
context (the provider’s value) changes. The provider is the vehicle for providing the context value(s)
to the child component, instead of props.

Now comes the Hook, useContext, which takes a context as an argument and makes it available
to the component. We will use it for accessing the context. Let’s move on to the example, as it will
become clearer. Follow these steps:

1. I will create the simplest possible context with a single state variable called auth (with a
useState Hook, setAuth) in the /src/context/AutProvider.js file:

import { createContext, useState } from "react";

const AuthContext = createContext({})

export const AuthProvider = ({children}) => {

 const [auth, setAuth] = useState({

Authenticating the users in React 183

 })

 return <AuthContext.Provider value={{auth, setAuth}}>

 {children}

 </AuthContext.Provider>

}

export default AuthContext

2. Now, we can wrap our Router routes in the index.js file and make auth and setAuth
available to all the routes. Edit the index.js file:

 import { AuthProvider } from './context/AuthProvider';

 …

 <React.StrictMode>

 <BrowserRouter>

 <AuthProvider>

 <Routes>

 <Route path='/*' element={<App />} />

 </Routes>

 </AuthProvider>

 </BrowserRouter>

 </React.StrictMode>

Finally, since we do not want to have to import both the AuthContext provider and
useContext in every component, we will create a simple utility Hook that will import the
context for us.

3. In the /src/hooks folder, create a file called useAuth.js:

import { useContext } from "react";

import AuthContext from "../context/AuthProvider";

const useAuth = () => {

 return useContext(AuthContext)

}

export default useAuth;

This setup might seem complicated, but it really isn’t – we just had to create one context and
one hook to facilitate our job. The benefit is that now we can cover the entire area of the app
and set and get the value of our auth variable. Let’s begin using our React authentication
mechanism and create the Login component – the one that will actually get us logged in. For
the form handling, I want to introduce a third-party package: React-Form-Hook (https://
react-hook-form.com/).

https://react-hook-form.com/
https://react-hook-form.com/

Authentication and Authorization184

We have already seen that manual form handling in React can get pretty tedious, and there are some
excellent and battle-tested solutions. In this chapter, we will get to use the React form hook. Let’s
begin by installing it:

npm install react-hook-form

Restart the React server with npm run start and fire up the Login.jsx component. This will
arguably be the most complex component logic-wise, so let’s break it down:

import { useForm } from "react-hook-form";

import { useState } from "react";

import { useNavigate } from "react-router-dom";

import useAuth from "../hooks/useAuth";

We import the useForm Hook, useState for some state variables, the useNavigate Hook from
the router for redirecting after the login, and our useAuth Hook since we want to set the authentication
context after a successful login. We then begin to draw our component and set up the Hook:

const Login = () => {

 const [apiError, setApiError] = useState();

 const { setAuth } = useAuth();

 let navigate = useNavigate();

 const {

 register,

 handleSubmit,

 formState: { errors },

 } = useForm();

The ApiError variable should be self-explanatory – I will use it to store potential errors generated
from the backend in order to display them later. The navigate is necessary for programmatic
navigation to different pages inside the router, while react-form-hook gives us several useful
tools: register is used to register the form inputs with the instance of the Hook, handleSubmit
is for, well, handling the submitting of the form, while errors will host the errors during the process.
Let’s continue with the code:

 const onFormSubmit = async (data) => {

 const response = await fetch("http://127.0.0.1:8000/users/
 login", {

 method: "POST",

 headers: {

 "Content-Type": "application/json",

Authenticating the users in React 185

 },

 body: JSON.stringify(data),

 });

 if (response.ok) {

 const token = await response.json();

 await getUserData(token["token"]);

 } else {

 let errorResponse = await response.json();

 setApiError(errorResponse["detail"]);

 setAuth(null);

 }

 };

 const onErrors = (errors) => console.error(errors);

The onSubmit is pretty similar to what we have already done manually: we send a POST request to
the /login endpoint with the form data encoded as JSON. If everything is fine (an OK response,
which is short for a response code in the 200–299 range), we proceed and get the token. We then
feed this token to another function called getUserData. If the API sends any error, we take this
error and put it in the apiError state variable. Remember, FastAPI has this nice detail key that
contains the human-readable message error. The errors are simply sent to the console.

Let’s take a look at the getUserData function – it is simply a call to the /me route on the backend:

 const getUserData = async (token) => {

 const response = await fetch("http://127.0.0.1:8000/users/

 me", {

 method: "GET",

 headers: {

 "Content-Type": "application/json",

 Authorization: `Bearer ${token}`,

 },

 });

 if (response.ok) {

 let userData = await response.json();

 userData["token"] = token;

 setAuth(userData);

 setApiError(null);

 navigate("/", { replace: true });

Authentication and Authorization186

 }

 };

This is the function that actually makes use of our token – we add it to the header of the request
and if a user is retrieved (an OK response), we use that user’s data to populate the auth object in
authContext. Finally, we send the user to the home page with the help of the router. The remaining
portion of the function is the markup and some utility classes:

return (

 <div className="mx-auto p-10 rounded-lg shadow-2xl">

 <h2 className="text-xl text-primary text-center font-bold

 my-2">

 Login page

 </h2>

 <form onSubmit={handleSubmit(onFormSubmit,

 onErrors)}>

 <div className="flex flex-col justify-center items-

 center">

 <input

 type="text"

 placeholder="email@email.com"

 className="input input-bordered input-accent w-

 full max-w-xs m-3"

 name="email"

 autoComplete="off"

 {...register("email", { required: "The email is

 required" })}

 />

 {errors?.email && errors.email.message}

 <input

 type="password"

 placeholder="your password"

 className="input input-bordered input-accent w-

 full max-w-xs m-3"

 name="password"

 {...register("password", { required: "The

Authenticating the users in React 187

 password is required" })}

 />

 {errors?.password && errors.password.message}

Finally, there is just some simple markup for displaying HTML elements:

 <button className="btn btn-outline btn-accent m-3

 btn-block">

 Login

 </button>

 </div>

 </form>

 {apiError && (

 <div className="alert alert-error shadow-lg">

 <div>

 {apiError}

 </div>

 </div>

)}

 </div>

);

};

export default Login;

It is important to note that each field in the form has a register prop that binds it to the form that is
controlled by the React form hook. If we try to log in with a non-existing email or password, the API
errors will be displayed, while if everything goes well, we should be redirected to the home page. In
order to see the auth data, we can take a look at the React extension in Chrome after the redirect.
In the Components tab, under ContextProvider, you should be able to see all the data stored in the
auth object.

It will be difficult to continue developing without proper navigation, so let’s visit the DaisyUI website
and find a suitable navigation bar. After snooping around, I found the following solution that required
some copying and some adjustments for the structure of the React Router's links:

import React from "react";

import { Link } from "react-router-dom";

import useAuth from "../hooks/useAuth";

Authentication and Authorization188

const Header = () => {

 const { auth, setAuth } = useAuth();

 return (

 <div className="navbar bg-primary text-primary-content">

 <div className="flex-1">

 <Link className="btn btn-ghost normal-case text-xl"

 to="/">FARM Cars </Link>

 {auth?.username

 ? `Logged in as ${auth?.username} - ${auth.role}`

 : "Not logged in"}

 </div>

 <div className="flex-none">

 <ul className="menu menu-horizontal p-0">

 {!auth?.username && (

 <li className="mx-1">

 <Link to="/login">Login</Link>

)}

 {!auth?.username && (

 <li className="mx-1">

 <Link to="/register">Register</Link>

)}

 {auth?.username && (

 <li className="mx-1">

 <button className=" btn-warning">

 Logout {auth?.

 username}

 </button>

)}

 </div>

 </div>

Authenticating the users in React 189

);

};

export default Header;

This is a regular navigation menu with a couple of context niceties: we import our useAuth Hook
and immediately gain access to authContext. This enables us to conditionally show or hide the
Login and register or Logout links. I added a small span inside the navbar to notify the user whether
there’s anybody logged in or not. Since the default theme is pretty bland, I am going to apply a DaisyUI
theme – you can explore them on https://daisyui.com/docs/themes/. I like the autumn
theme, so I am just going to find the index.html file and add data-theme=”autumn” to the
html opening tag.

Our Logout button is not doing anything useful, so let’s add a logout handler in the same Header.
jsx file:

 let navigate = useNavigate();

 const logout = () =>{

 setAuth({})

 navigate("/login", {replace:true})

 }

And just add the onClick handler to the Logout button and set it to {logout}.

We have created a very simple authentication system, but we have no routes to protect, especially
routes that involve cars: updating, adding, and deleting. That is the final part of the authentication
system that I want to show here. There are many ways to prevent certain components from showing
or displaying conditionally in React. An elegant way is making use of the React router again – with
the use of outlets.

Simply put, we will make an authentication component that will just check for the presence of the
auth data – if the data is present, you will be served the outlet, the enclosed protected routes, and
corresponding components, and if not, the router will send you to the login page (or whatever page
you wish).

Let’s create a component called RequiredAuthentication.jsx:

import { useLocation, Navigate, Outlet } from "react-router-
dom";

import useAuth from "../hooks/useAuth";

const RequireAuthentication = () => {

 const { auth } = useAuth();

 const location = useLocation;

https://daisyui.com/docs/themes/

Authentication and Authorization190

 return auth?.username ? <Outlet /> : <Navigate to="/login"
/>;

};

export default RequireAuthentication;

The component acts as a simple switch: if the username is present in the auth object, the outlet takes
over and lets the client through to any route that is enclosed. Otherwise, it forces navigation to the
/login route.

This isn’t much different than some other approaches that use a simple functional component and
then conditionally render the reserved output or the login route.

In order to be able to see our authentication logic in practice, we need at least one protected route. Let’s
create a new component and call it CarList.jsx. It will simply display all the cars in the database,
but in order to be accessible, the user will have to be logged in – either as an admin or a salesperson.
The CarList component has some standard imports and Hooks:

import { useEffect, useState } from "react"

import useAuth from "../hooks/useAuth"

import Card from "./Card"

const CarList = () => {

 const { auth } = useAuth()

 const [cars, setCars] = useState([]);

The Card component is really not important here – it is just a card element provided by DaisyUI,
similar to the one we used in Chapter 6, Building the Frontend of the Application in order to display
the car information. The useAuth hook provides us with a fast way to check for the authenticated
user information through Context. The useEffect Hook is used to make a call to the FastAPI
server and populate the cars array:

useEffect(() => {

 fetch("http://127.0.0.1:8000/cars/", {

 method: "GET",

 headers: {

 "Content-Type": "application/json",

 Authorization: `Bearer ${auth.token}`,

 },

 })

 .then((response) => response.json())

 .then((json) => {

 setCars(json);

Authenticating the users in React 191

 });

 }, []);

Finally, the JSX for returning the list of cars is just a map over the array of cars:

return (

 <div>

 <h2 className="text-xl text-primary text-center font-

 bold my-5">

 Cars Page

 </h2>

 <div className="mx-8 grid grid-cols-1 md:grid-cols-2

 gap-5 p-4">

 {cars &&

 cars.map((el) => {

 return <Card key={el._id} car={el} />;

 })}

 </div>

 </div>

);

};

export default CarList;

In order to hook this component up with the application, we need to update the App.js file with
the routes:

<Routes>

 <Route path="/" element={<Layout />}>

 <Route path="/" element={<HomePage />} />

 <Route path="login" element={<Login/>} />

 <Route path="register" element={<Register/>} />

 <Route element={<RequireAuthentication />}>

 <Route path="cars" element={<CarList/>} />

 </Route>

 </Route>

 </Routes>

Authentication and Authorization192

Notice how we wrapped the CarList component inside the RequireAuthentication route: we
could add other routes that need authentication in the same way, and we could also perform more granular
control over which user can access which route. It is easy to edit the RequireAuthentication
component and perform additional checks on the type of authenticated user – so we could have an
area for admins only, but not for regular salespersons and so on.

Finally, let’s update the Header.jsx component as well, in order to show the link to the newly
created /cars route:

 {!auth?.username && (

 <li className="mx-1">

 <Link to="/register">Register</Link>

)}

 <li className="mx-1">

 <Link to="/cars">Cars</Link>

I have left the link visible for all visitors – logged in or not – in order to showcase the authentication
route’s functionality; if you click the link without being logged in, you will be sent to the login page,
otherwise, you should see a nice set of cards with the cars displayed.

There is really no need to present the remaining CRUD operations on the cars that should require
authentication – we have already seen how the backend checks for the appropriate user by reading
the JWT token, so it is just a matter of ensuring that the token is present and valid.

As I underlined earlier, authentication and authorization are probably the most fundamental and serious
topics in any application, and they put before the developer and stakeholders a series of challenges and
questions that need to be addressed early on. While external solutions (such as Auth0, AWS Cognito,
Firebase, Okta, and others) provide robust and industrial strength security and features, your project
might need a custom solution in which the ownership of data is under total control.

In these cases, it is important that you weigh up your options carefully, and who knows – maybe you
will end up having to write your own authentication. Not all apps are made for banking, after all!

Summary
In this chapter, we have seen a very basic but quite representative implementation of an authentication
mechanism. We have seen how FastAPI enables us to use standard-compliant authentication methods
and we implemented one of the simplest possible yet effective solutions.

Summary 193

We have learned how elegant and flexible FastAPI and MongoDB are when it comes to defining granular
roles and permissions, with the aid of Pydantic as the middleman. This chapter was focused exclusively
on JWT tokens as the means of communication because it is the primary and most popular tool in
single-page applications nowadays, and it enables great connectivity between services or microservices.

Finally, we created a simple React application and implemented a login mechanism that stores the user
data in the state in memory. I have chosen not to show any solution of persisting the JWT token on
purpose – the idea is just to see how a React application behaves with authenticated users and with those
who are not. Using both localstorage and cookies has its pros and vulnerabilities (localstorage more
so), but they both might be viable solutions for an application that has very light security requirements.

It is important to emphasize again that the FARM stack can be a great prototyping tool, so knowing
your way around when creating an authentication flow, even if it is not ideal or absolutely bulletproof,
might be just good enough to get you over that MVP hump in the race for the next great data-driven
product! In the next chapter, we will see how we can integrate our MongoDB and FastAPI-based backend
with a robust React framework – Next.js – and we will cover some standard web development tasks
such as image and file uploads, authentication with httpOnly cookies, simple data visualizations,
sending emails, and taking advantage of the flexibility of the stack.

Part 3 – Deployment and
Final Thoughts

In this part, we will explore the Next.js framework, the Cloudinary online image service, and a couple
of popular deployment options both for the frontend and the backend. We will also see some steps
required for achieving functionalities such as displaying charts based on data from the backend and
sending emails. We will end this part with some useful considerations and some project ideas geared
towards solidifying what we have learned so far.

This part includes the following chapters:

• Chapter 8, Server-Side Rendering and Image Processing with FastAPI and Next.js

• Chapter 9, Building a Data Visualization App with the FARM Stack

• Chapter 10, Caching with Redis and Deployment on Ubuntu (DigitalOcean) and Netlify

• Chapter 11, Useful Resources and Project Ideas

8
Server-Side Rendering and

Image Processing with FastAPI
and Next.js

We have covered a lot of ground in our FARM-stack exploration so far, but when it comes to building
real, modern web applications, there are so many aspects and topics that just listing all of them would
take dozens of pages.

In this chapter, I will try to focus on a couple of key topics and essential web development requirements
that you are bound to run into, namely: making fast, SEO-performant, server-side, or statically
generated pages, and image handling. Where possible, I will try to give concrete and deliberately
simplified examples, while outlining different solutions and strategies and emphasizing the strengths
specific to the MongoDB, FastAPI, and React frameworks.

In this chapter, we’ll cover, or at least touch on, the following topics:

• Creating a FastAPI endpoint that can accept and process files, namely, images

• Introduction to the Next.js framework and server-side rendering

• Manipulating and uploading images to an external service

• Authentication with Next.js and API routes using FastAPI JWTs

• Deployment of FastAPI on Heroku and Next.js on Vercel

By the end of this chapter, you will have the basic knowledge required to tackle numerous web-related
challenges and will know how to search for solutions autonomously, while leveraging the power and
flexibility of Next.js and FastAPI.

Server-Side Rendering and Image Processing with FastAPI and Next.js198

Technical requirements
To complete this chapter’s code, the requirements are the same as for the previous chapters – you need
a working Python environment (version >3.6) and a Node.js installation with npm.

You can download the complete project on GitHub here: https://github.com/PacktPub-
lishing/Full-Stack-FastAPI-React-and-MongoDB/tree/main/chapter8.

Introduction to our Sample App
In the previous chapters, we were able to dive into the basic components of our FARM stack, but
web development is much more than a basic sum of its components. Full-stack web development
often consists of a constant back and forth between the frontend and the backend, and their seamless
communication is the key to any functional and efficient web app. In this chapter, we are going to build
something a bit more realistic, while remaining on topic – a car selling application – but adhering to a
slightly more complex specification. As in the previous chapters, I do not plan to propose optimized
or clever solutions, but rather simple, illustrative code whose main purpose is to highlight the topic
at hand. Roughly speaking, the specification is the following:

• The app should accommodate external users who do not need to be logged in to see the cars
and internal users – admins and salespersons, who are able to perform CRUD operations on
the car adverts

• The car listings should be rendered on the server-side (for page loading speed and SEO)

• The car entities should contain an image – in a real app, we would want an array of images, at
least 5 or 10 of them, but in our case, one will do

• The images should be hosted on a cloud provider and allow for on-the-fly transformations
and optimization

• We want to enable the authenticated user to remain logged in even when the browser is closed
or the page is refreshed, for a predetermined period of time

• Finally, we want to explore at least a couple of possible deployment options and discuss the
differences

This sounds like a lot of ground to cover, so we won’t discuss the code that we have already created in
the previous chapters. Rather, I will point out the new or different parts, and try to keep the features
of the new technologies covered at a minimum, while providing you with useful links and books for
diving deeper. We will begin with the backend.

https://github.com/PacktPublishing/Full-Stack-FastAPI-React-and-MongoDB/tree/main/chapter8
https://github.com/PacktPublishing/Full-Stack-FastAPI-React-and-MongoDB/tree/main/chapter8

Managing images and files in the backend 199

Managing images and files in the backend
Files, especially images, are essential to modern web applications. Apart from the usual story of an
image being worth a thousand words, images have multiple functions – aesthetic (incorporated in
your site branding and color schemes and conveying certain emotions), informative (in our case, the
user wants to see whether the car they are considering is worth buying!), and so on. The evolution
of the process of serving images has evolved with the web itself; serving optimized and fast-loading
images of the right dimensions and resolution has become an essential task in web development and
there are many solutions, at various levels, that help us achieve good results.

First, the images have to be stored somewhere and have to be accessible by the app. While you could be
storing images on your web server and serving them pretty quickly (they are, after all, static assets), the
tendency is to host them on a third-party provider and make use of their content delivery networks
(CDNs). Images often make up for more than half of the total page payload, and specialized image
hosting providers help us reduce that load, serving tailored images for every device, size, and network
connection speed. While there are many competitors on the market, I will not delve into their differences
and comparative advantages – it is a type of research that you will have to do yourself, taking into
account your project. For my web development needs, Cloudinary – one of the market leaders – has
been nothing short of excellent. It is a mature company that specializes in serving content (images,
videos, and also PDFs) and optimizing it for all devices while providing image transformations on the
fly, and much more. They offer a generous free tier that will allow you to get to know the platform and
familiarize yourself with their APIs, available both in Python and JavaScript. Let’s create an account
on Cloudinary now!

Creating a Cloudinary account

Head over to the Cloudinary website and click on the Create Account page. Once there, on https://
cloudinary.com/users/register/free, you should fill in the required data: your name,
email address, and a secure password. It is paramount that you choose the Digital Asset Management
account, as that will enable you to serve your images and videos (digital assets) through Cloudinary.
While Cloudinary is a feature-rich ecosystem in its own right, we will not spend time exploring it;
we will just create and use the bare minimum that will allow us to store our car images and briefly
touch on some transformations later.

https://cloudinary.com/users/register/free
https://cloudinary.com/users/register/free

Server-Side Rendering and Image Processing with FastAPI and Next.js200

Figure 8.1 – Cloudinary account variables

After you have created your account, head over to the Dashboard page and take notice of the three
variables that are displayed (or hidden) on the page – we will use them when creating our image-
posting endpoint in FastAPI, in a similar way as the MongoDB variables. You can reveal them by
clicking, and then you can copy them into a handy .txt file.

Creating a new MongoDB database and collections

For this application, we will create a new MongoDB database and collections. Head over to the
MongoDB site or fire up Compass and create a new database called nextCars with two collections
inside: users and cars. Since we have covered the creation of databases and collections in Chapter
2, Setting Up the Document Store with MongoDB, I will not go over the process again, to save some
time and space. The connection string for the database will need to be updated to match the new
database name (DB_NAME=nextCars).

Updating the FastAPI REST API

The REST API for this application is going to be mostly unaltered, and I believe that is one of the
strengths of this stack – the modularity and interchangeability of the components. We will be able
to reuse our entire model and our routes (and routers), while just adding the features that regard the
addition of the image. Since we have decided to store our images on Cloudinary, all we have to do
is provide a URL for the picture to the car model. This URL will be generated by Cloudinary upon
upload, and it will enable us to generate different image sizes, according to our needs. In a more realistic
scenario, you might want to create a MongoDB array field for storing a set of images (URLs), or you
could pull the image out altogether into a new Pydantic and MongoDB model and then reference it –

Managing images and files in the backend 201

something that would probably be the most recommended practice. Since my primary concern here is
to showcase the storing and serving of images through FastAPI, and not modeling, we will stick to the
single picture field inside the Cars model. In the models.py file, we will update the following:

models.py

class CarBase(MongoBaseModel):

 brand: str = Field(..., min_length=3)

 make: str = Field(..., min_length=1)

 year: int = Field(..., gt=1975, lt=2023)

 price: int = Field(...)

 km: int = Field(...)

 cm3: int = Field(..., gt=600, lt=8000)

 picture: Optional[str] = None

class CarDB(CarBase):

 owner: str = Field(...)

class CarUpdate(MongoBaseModel):

 price: Optional[int] = None

We have just added a picture field to the Car model and set it to be an optional string that defaults
to a None value. This will simplify things down the line if we want to import our cars dataset and do
not provide an image right away. The CarDB model just extends our CarBase model with the user
ID, while the CarUpdate model remains the same – only updating the price is possible.

The rest of the models.py file is unchanged, and I will not repeat it here. The users.py router
and our main.py file are also unaltered.

On a side note, I should say that in order to get the code for this book to work, I had to modify our
main.py file – the part where we implement the CORS middleware. Even though FastAPI implements
the underlying Starlette’s framework middleware, at the point of writing this, it seems that it is necessary
to import directly Starlette’s middleware. To cut things short, our main.py file looks like this now:

from decouple import config

from fastapi import FastAPI

from starlette.middleware import Middleware

from starlette.middleware.cors import CORSMiddleware

middleware = [

 Middleware(

 CORSMiddleware,

Server-Side Rendering and Image Processing with FastAPI and Next.js202

 allow_origins=["*"],

 allow_credentials=True,

 allow_methods=["*"],

 allow_headers=["*"],

)

]

from motor.motor_asyncio import AsyncIOMotorClient

from routers.cars import router as cars_router

from routers.users import router as users_router

DB_URL = config("DB_URL", cast=str)

DB_NAME = config("DB_NAME", cast=str)

origins = ["*"]

app = FastAPI(middleware=middleware)

As you can see, the middleware is imported directly from Starlette and defined directly upon the
app instantiation. FastAPI is still a relatively new and young framework, and it is very possible that
this hack will not be necessary in the future, but I do feel the need to save you some debugging and
research time.

The rest of the main.py file is the same as before; we include the routers and define the events for
startup and shutdown:

app.include_router(cars_router, prefix="/cars", tags=["cars"])

app.include_router(users_router, prefix="/users",
tags=["users"])

@app.on_event("startup")

async def startup_db_client():

 app.mongodb_client = AsyncIOMotorClient(DB_URL)

 app.mongodb = app.mongodb_client[DB_NAME]

@app.on_event("shutdown")

async def shutdown_db_client():

 app.mongodb_client.close()

Let’s open our .env file and set up Cloudinary. Notice that you can use Cloudinary even without
providing the credentials (API and secret keys), but in order to do so, you must explicitly set that in
your Cloudinary settings page, under the Uploads tab – Enable unsigned uploading:

Managing images and files in the backend 203

Figure 8.2 – Cloudinary settings page

In this case, I do want to set up a Cloudinary client and provide it with our secret keys. In the virtual
environment, install the Cloudinary Python client with the following:

pip install cloudinary

Once installed, we will go to our Cloudinary management page and copy the API key and the SECRET
key into our .env file, after the MongoDB credentials:

DB_URL=mongodb+srv://farmbook:xxxxxxxx@cluster0.fkm24.mongodb.
net/?retryWrites=true&w=majority

DB_NAME=nextCars

CLOUD_NAME=<your cloud name>

API_KEY=<your api key>

API_SECRET=<your api secret>

This way, we will be able to access this environment data with Python-Decouple. Since we will be
using the Cloudinary API only in the /cars router, we can open the /routers/cars.py file
and update it. Let’s go over the entire /routers/cars.py file:

from typing import List, Optional

from fastapi import (

 APIRouter,

 Request,

 Body,

Server-Side Rendering and Image Processing with FastAPI and Next.js204

 UploadFile,

 File,

 status,

 HTTPException,

 Depends,

 Form,

)

from fastapi.encoders import jsonable_encoder

from fastapi.responses import JSONResponse

from fastapi.responses import StreamingResponse

from decouple import config

import cloudinary

import cloudinary.uploader

When dealing with file uploads, we cannot use JSON – we must accept the file through form data and
we cannot mix the two (an HTTP limitation), so we imported Form, File, and UploadFile from
FastAPI. The process of handling Form data is explored in Chapter 3, Getting Started with FastAPI,
so now we have a chance to try it out; that is basically the main idea of the whole book – trying things
out, even if they are not necessary, so in case you might need them, you know where to start.

The last two imports are Cloudinary’s client and uploader utilities that enable our app to communicate
with the online image service. Let’s continue with /routers/cars.py:

from models import CarBase, CarDB, CarUpdate

from authentication import AuthHandler

CLOUD_NAME = config("CLOUD_NAME", cast=str)

API_KEY = config("API_KEY", cast=str)

API_SECRET = config("API_SECRET", cast=str)

cloudinary.config(

 cloud_name=CLOUD_NAME,

 api_key=API_KEY,

 api_secret=API_SECRET,

)

router = APIRouter()

auth_handler = AuthHandler()

We are importing our Pydantic car models and our authentication handler, which hasn’t changed.
After that, we need to import the Cloudinary keys and configure the library. After this is all set, we
proceed to instantiate the FastAPI router responsible for cars and the authentication.

Managing images and files in the backend 205

While the routes for listing all cars, getting one car by ID, deleting, and updating remain the same
(so I will not list them again here), the route that is completely different is the one for creating a new
car, the POST route:

@router.post("/", response_description="Add new car with
picture")

async def create_car_form(

 request: Request,

 brand: str = Form("brand"),

 make: str = Form("make"),

 year: int = Form("year"),

 cm3: int = Form("cm3"),

 price: int = Form("price"),

 km: int = Form("km"),

 picture: UploadFile = File(...),

 userId=Depends(auth_handler.auth_wrapper),

):

 result = cloudinary.uploader.upload(

 picture.file,

 folder="FARM",

 crop="scale",

 width=800,

)

 url = result.get("url")

 car = CarDB(

 brand=brand,

 price=price,

 cm3=cm3,

 km=km,

 make=make,

 year=year,

 picture=url,

 owner=userId,

)

 car = jsonable_encoder(car)

 new_car = await request.app.mongodb["cars"].insert_one(car)

Server-Side Rendering and Image Processing with FastAPI and Next.js206

 created_car = await request.app.mongodb["cars"].find_one(

 {"_id": new_car.inserted_id}

)

 return JSONResponse(status_code=status.HTTP_201_CREATED,
content=created_car)

You can notice several differences from our previous route: we no longer accept JSON, but Form data,
so the values (brand, make, cm3, and so on) are taken from the Form data parameters and not
from parsing JSON data. We also have File and FileUpload for handling the image file, which
we called picture. The file is immediately handed to Cloudinary and we get a response back upon a
successful upload. Notice that here we should perform some error checking in case the upload doesn’t
go as planned! The uploader, if everything goes well, returns us a result and, at this point, all we care
about is the URL of the image – this URL allows us not only to access the image but also to identify
it and apply transformations to it!

I passed different parameters to the Cloudinary uploader along with the file: FARM is the folder where
I want the picture uploaded (it is trivial to create custom folders inside the Assets page in Cloudinary);
I set the picture width to 800, which means 800 px maximum, and the resizing method to scale.
A complete list of parameters you can pass on upload is available on the Cloudinary website and it
includes various transformations that are way beyond the scope of this book.

We then use the said URL and the user ID to construct a Car instance to be saved to our MongoDB
database. This upload can take some time, so it would be a good candidate for treating with some
loading spinners or other activity indicators on the frontend. Finally, we return the created car with
the status 201 Created.

You can now spin the server up with the following:

uvicorn main:app --reload

Now, try to log in.

First, we need to test the /register route and create some users. You can use HTTPie to send a
POST request and register a user, as we did previously:

venv) λ http POST "http://localhost:8000/users/register"
email="marko@gmail.com" password="marko" username="marko"
role="ADMIN"

I have a couple of dummy users created, so I can use HTTPIE to login and get the JWT for authentication:

(venv) λ http POST "http://localhost:8000/users/login"
email="marko@gmail.com" password="marko"

Managing images and files in the backend 207

As usual, we get a JSON web token as well as the logged-in user data:

{

 "token": "eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJleHAiO-
jE2NTcwNDY3ODgsImlhdCI6MTY1NzAyNTE4OCwic3ViIjoiNjJiZjU5MWM3N-
2M3OWUxYTkwMmUwNTZhIn0.Wf7ps6IPypzDHJxrOFHJhnHw9pJkRf5QWJui-ua
e3x4",

 "user": {

 "email": "marko@gmail.com",

 "role": "ADMIN",

 "username": "marko"

 }

}

If we now include this JWT in our Insomnia client as a bearer token and post to the /cars endpoint
some car data along with a car image it should look like as shown in the following image:

Figure 8.3 – Insomnia REST client performing a POST request

There are a couple of things to keep in mind when testing – the request type has to be set to Multipart
and the Picture field has to be specified as a file. Also, do not forget to add a valid token in the
Bearer tab; otherwise, you will get a Not Authenticated error.

Server-Side Rendering and Image Processing with FastAPI and Next.js208

The upload could take a while, depending on your connection’s upload speed, but once you get a
response, it will contain a picture URL. If you click it, it will display your image, reduced to a width
of 800 pixels, and hosted securely on Cloudinary!

Integrating Python Pillow for image processing

Before moving to the frontend, where we will spend most of our time in this chapter, I want to add
just a little bit of code to this particular POST endpoint. While Cloudinary enables us to perform
numerous image (and video!) transformations, there might be a situation in which you want or have
to perform some operations yourself. One of the main advantages and selling points of the FARM
stack is the availability of Python’s rich and vast module ecosystem that encompasses different fields.
As it happens, Python has a very powerful and mature imaging library, formerly known as PIL and
now Pillow, which enables us to perform most filtering, resizing, cropping, watermarking, and so on,
while also being able to treat images as matrices of pixels and apply complex algorithms.

In this example, I just want to show how easy it is to plug in some Pillow functionality. Let’s install
Pillow by stopping our FastAPI server and typing the following:

pip install Pillow

After that, we will add a couple of imports to the /routers/cars.py file:

from PIL import Image, ImageOps

Then, update the POST endpoint:

@router.post("/", response_description="Add new car with
picture")

async def create_car_form(

 request: Request,

 brand: str = Form("brand"),

 make: str = Form("make"),

 year: int = Form("year"),

 cm3: int = Form("cm3"),

 price: int = Form("price"),

 km: int = Form("km"),

 picture: UploadFile = File(...),

 userId=Depends(auth_handler.auth_wrapper),

):

 original_image = Image.open(picture.file)

 poster_image = ImageOps.posterize(original_image, 2)

Introduction to Next.js and our frontend project 209

 out_image = BytesIO()

 poster_image.save(out_image, "JPEG")

 out_image.seek(0)

 result = cloudinary.uploader.upload(

 out_image,

 folder="FARM",

 crop="scale",

 width=800,

)

The preceding code takes on the uploaded file using the Image.open method of the Pillow module,
applies a simple transformation (posterizes the image), and finally, returns it as a JPEG to Cloudinary.
If you try the exact same POST request with the Ford Fiesta image (courtesy of Vincent Guzman from
Unsplash) from the previous try, you will get a transformed image. I assume you won’t opt for such
extreme image operations, but it is good to know how to tackle image transformation and storage
with these two powerful tools. You could watermark images for an advert site, create duo-tone images
that fit your branding colors, add borders or rounded corners, and pretty much anything that you
can imagine.

In this section, we were able to integrate a real image-processing pipeline into our FastAPI REST API
and you could use some variations of it for various image-related tasks: product galleries, systematic
image processing, applying filters, and so on.

In the following section, we will begin working with Next.js – a powerful and feature-rich React-based
web framework.

Introduction to Next.js and our frontend project
In this section, we will introduce Next.js, the React web framework, and we will begin creating a project
throughout the chapter. We will develop a Next.js-powered website for selling used cars, similar to
what we did in the previous chapters. The backend will be powered by our FastAPI REST API, while
the frontend will use various features provided by Next.js. I will gradually build up the app, adding
features in a simple and, hopefully, straightforward way. The end goal of the chapter is not to make an
optimized or production-ready app, but rather to illustrate the possibilities and features of the tools
that we’re going to use.

Let’s speak about Next.js, one of the hottest frontend frameworks in the last couple of years. Next.js
offers numerous features that cater to the modern web, and this introduction is meant only to give
you an idea of what can be accomplished with it. The first problem that Next.js solves is the fact that
React runs on the client-side, meaning that the pages are displayed only after being downloaded, ran
in the browser, and rendered on the client. This has several drawbacks, especially with larger and
more complex applications – it negatively affects Search Engine Optimization and the initial loading
might take a while.

Server-Side Rendering and Image Processing with FastAPI and Next.js210

Several frameworks where not only React-based, and companies have tried to create a way of
pre-rendering the resulting HTML and providing at the same time the JavaScript-based interactivity
of a React (or Svelte, or Vue.js) application. Vercel’s Next.js is arguably the most feature-rich and most
complete out of several similar solutions (Vue.js’s Nuxt.js, the relatively new SvelteKit, and so on).
One young framework that looks very promising and flexible is Astro.js.

For working with Next.js, the only real requirement is that you are familiar with React since it is mostly
React that we will be writing. However, Next.js provides several game-changing features that might
make you switch to it for the vast majority of your projects. Let’s list some of the most interesting
and significant:

• File-based routing: A folder/file structure that maps directly to URLs, coupled with the Next
router (with hooks!) for programmatic navigation

• Server-side rendering: The pages can be rendered on the server as well as on the client, or both,
as well as statically prerendered

• Static site generation: Pages can be entirely static and Next.js can be used as part of a JAMStack site

• Image optimization: Like another React-based framework, Gatsby.js, Next.js provides us with
an extremely useful Image component that greatly facilitates the tedious image resizing and
optimizations, and the process of generating image source sets of the same image for different
viewports

• Numerous other goodies: Incremental static generation (basically, the process of regenerating the
site by creating only the pages that should be updated), TypeScript support, and the pluggable
Node.js underlying server that can also make use of Express.js or Fastify.js (two blazingly fast
Node.js frameworks)

• Configuration tools and “abstract” documents for unified layouts, plugins, and much more

I believe that this is the right place to inform you that Packt has published probably the best book
ever written on Next.js – Real World Next.js by Michele Riva (https://www.packtpub.com/
product/real-world-next-js/9781801073493) and if you wish to dive into the framework
(and you should, by all means!), feel free to grab it.

Scaffolding the application

Let’s begin building our Next.js-powered car sales application. Similar to create-react-app,
Next.js provides us with a command-line tool for scaffolding a new Next app. The only requirement
for this process is having Node.js, npm, and npx installed on our machine.

Enter the /Chapter8 folder, open a new terminal window (I am still using Cmder), and issue the
following command:

npx create-next-app next-cars

https://www.packtpub.com/product/real-world-next-js/9781801073493
https://www.packtpub.com/product/real-world-next-js/9781801073493

Introduction to Next.js and our frontend project 211

This command will take some time to run, and it will create a project structure, install numerous
dependencies, and give you a sample page. If everything went how it should, your terminal will
instruct you to change the directory to the newly created folder (next-cars, in our case) and start
the development server with the following:

npm run dev

If you visit the page at localhost:3000 (the default Next.js port), you will be greeted by the default
Next.js page. Let’s quickly run over the project structure – open the next-cars folder with your
favorite code editor (I strongly recommend Visual Studio Code featuring the ES7 React snippets plugin!).

The /pages folder is where the magic happens. To put it as simply as possible, if you create a page,
which is really a React component, name it index.js, and put it in the /pages/cars/mazda
folder, it will render this page/component at the /cars/mazda URL. If you create another component
in the same /mazda folder and name it 3.js, it will render a component for the /cars/mazda/3
URL, and so on. Another feature that is important to emphasize immediately is the fact that you
can name a page [slug].js, with the use of square brackets. Square brackets are used to capture
url parameters, so a file located at the location of /cars/[slug].js will render the component
for every request matching the URL /cars/anything, while passing the parameter slug (equal to
"anything" in this case) as a prop to the component..

Styling with Tailwind CSS

Let’s install Tailwind CSS since I want to keep the styling work to an absolute minimum and, as we
did before with React, the process is practically identical. Stop the Next.js development server and
type the following command:

npm install -D tailwindcss postcss autoprefixer

npx tailwindcss init -p

The second command will initialize a tailwind.config.js file, so open it and replace the
content with this:

module.exports = {

 content: [

 "./pages/**/*.{js,ts,jsx,tsx}",

 "./components/**/*.{js,ts,jsx,tsx}",

],

 theme: {

 },

 plugins: [

],

}

Server-Side Rendering and Image Processing with FastAPI and Next.js212

Finally, delete Home.module.style in the /styles folder and replace the global styles with
the following Tailwind directives:

@tailwind base;

@tailwind components;

@tailwind utilities;

I usually like to immediately test the home page. Open the /pages/index.js file, the one that
will map to the root URL (/), and create a generic React component by using the _rafce shortcut:

const index = () => {

 return (

 <div className="bg-orange-500 text-white p-5">

 FARM Cars

 </div>

)

}

export default index

Restart the server and you should see a simple page with one div element, an orange background
with white text; that means Tailwind is installed. Just in case, keep in mind that Tailwind maintains
excellent documentation, so head over to the guides at https://tailwindcss.com/docs/
guides/nextjs in case anything changes in the future versions.

Customizing the _app.js component

When building our React app, we used a custom layout component to wrap the pages and achieve
a consistent look across the application. Next.js, among other useful things, provides us with a
special component called App that lives in the /pages/_app.js file. This component is used
for initializing pages and provides different capabilities, such as the said layout consistency (header,
footer, and page content), but can also be used for keeping track of the state while navigating the app,
injecting additional data, and so on. For now, we will use it just to create a page skeleton. Let’s create a
folder called /components in the root folder (the same level as /pages) and create two generic
components (Header.jsx and Footer.jsx) with just the text header and footer, respectively.

Then, let’s alter the _app.js component:

import '../styles/globals.css'

import Header from '../components/Header'

import Footer from '../components/Footer'

function MyApp({ Component, pageProps }) {

 return (

https://tailwindcss.com/docs/guides/nextjs
https://tailwindcss.com/docs/guides/nextjs

Introduction to Next.js and our frontend project 213

 <div className="flex flex-col justify-between items-stretch

 min-h-screen">

 <Header />

 <div className="flex-1">

 <Component {...pageProps} />

 </div>

 <Footer />

 </div>

)

}

export default MyApp

All the content of our pages will be rendered into the highlighted component, while we added a
wrapping div, set it to a flex column display using Tailwind, and made the header and footer stick to
the top and bottom.

Next.js provides us with a very nifty Link component that optimizes the navigation within the
application with features such as page preloading, dynamic routes variable handling, and more.

This basic setup provided us with some useful features – we have a layout component, and we didn’t
have to make one from scratch or manually wrap components.

Setting up the environment variables

Next.js allows us to make use of environment variables and it does so in a very simple and elegant
way, following a few conventions. Why do we need environment variables? Well, in our case, we do
not want to hardcode the URL of our API everywhere in the code – we are working with a local API
(on localhost:8000) during development, then we will eventually deploy our Python API on
Heroku or some other server, and we will have another address. Finally, when we deploy our Next.js
application, we will want to provide the URL of our production server as an environment variable to
Vercel or Netlify, depending on our deployment solution.

Next.js will read the .env.local file, located in the root of our project, and load its variables into
the current environment. These variables will not be available to the client unless they start with
NEXT_PUBLIC_. In our case, we just want to save our API_URL that will be served by FastAPI. So,
let’s put that in the file, bearing in mind that it should be available to the clientside:

NEXT_PUBLIC_API_URL=http://127.0.0.1:8000

If we wanted to add other environment variables, they would have to be stacked below this one. It
is important not to add the trailing slash at the end of the URL when dealing with Heroku or the
requests will crash.

Server-Side Rendering and Image Processing with FastAPI and Next.js214

Scaffolding the required pages

Our strategy now will be the following:

• We will create all the pages needed for our application: the car list and the individual car pages
(server-side rendered), the register and login pages, and the create new car page. For brevity’s
sake, we will skip the pages for updating and deleting cars, but you are more than welcome to
implement them yourself as a useful exercise.

• After all the pages and the navigation have been scaffolded, we will create a more robust
authentication mechanism, using Next.js API routes, httpOnly cookies, and the React
Context API. The users will be able to log in and log out, and only admins and salespersons
will be able to create new cars (a similar logic would be implemented for updating and deleting
cars). We will not implement a registration page and that would also be a great exercise for
you – it shouldn’t be harder than coding the login route, depending on whether you opt to
automatically log the newly created users in or not.

We have just wrapped the whole application inside a div and added the footer component at the end.
If you take a look at the app now, on http://localhost:3000 with the Next.js server running,
you should be able to see the text footer after the FARM Cars title from index.js, our only page
for now. I will apply the exact same process for building the header component, which will contain
just a menu bar. Let’s now update a Header.jsx component in the /components folder:

const Header = () => {

 return <div

 className="text-orange-600 p-2 font-bold">

 Header</div>;

};

export default Header;

I have just added a minimal amount of Tailwind style just so we can see where the header is. Now, we
will include it in the _app.js file, as we did with the footer:

import '../styles/globals.css'

import Header from '../components/Header'

import Footer from '../components/Footer'

function MyApp({ Component, pageProps }) {

 return (

 <div>

 <Header />

 <Component {...pageProps} />

 <Footer />

Introduction to Next.js and our frontend project 215

 </div>

)

}

export default MyApp

Finally, we can make the header and footer stick to the top and bottom of the page, respectively, by
applying Tailwind classes; we will make the whole app a flex container, and we will set the minimum
height to screen height while allowing the App component to take up as much space as needed:

import '../styles/globals.css'

import Header from '../components/Header'

import Footer from '../components/Footer'

function MyApp({ Component, pageProps }) {

 return (

 <div className="min-h-screen flex flex-col">

 <Header />

 <div className="flex-1"><Component {...pageProps} />

 </div>

 <Footer />

 </div>

)

}

export default MyApp

Having the layout in place, now we can create a simple navigation menu in the header with the help of
the Next.js Link component. Let’s reiterate: we need the following links – home (/), cars (/cars),
login (/account/login), and register (/account/register) – for now. Later on, we will
display some links conditionally depending on the user – whether a user is logged in or not, whether
they’re an admin or salesperson, and so on.

Creating the header navigation

Let’s create this navigation, using the Link component and the Tailwind classes:

import Link from "next/link"

const Header = () => {

 return (

 <div className=" text-orange-600 p-2 font-bold flex flex-

 row justify-between items-center">

 <div>

 <Link href="/">

Server-Side Rendering and Image Processing with FastAPI and Next.js216

 <a>FARM Cars

 </Link>

 </div>

 <ul className="flex flex-row space-x-4 ">

 <Link href="/cars">

 <a>Cars

 </Link>

 <Link href="/about">

 <a>About

 </Link>

 <Link href="/account/register">

 <a>Register

 </Link>

 <Link href="/account/login">

 <a>Login

 </Link>

 </div>

);

};

export default Header;

These links are downright ugly, and they all point to non-existing locations, but while we won’t delve
into aesthetic enhancements, we will create all the pages now and just scaffold them with the help
of the ES7+ React/Redux/React-Native snippets Visual Studio Code extension we
installed earlier. I will not list all the code here, but just go over the following files: in the /pages
directory, create a /cars folder, and inside index.js, add the following:

const cars = () => {

 return (

Introduction to Next.js and our frontend project 217

 <div>Cars page</div>

)

}

export default cars

I will repeat this exact process and create an /accounts folder in the /pages folder and inside it,
I will create the Login and Register pages.

Authentication with API routes and httpOnly cookies in Next.js

We should be able to navigate using our navigation in the header. It is now time to introduce an
important feature of Next.js – the API routes. Put simply, Next.js allows us to write API endpoints by
using a special folder called /api located inside the /pages directory. Inside this /api folder, we
can make use of the folder and file-based Next.js router, so an API route that lives in a /api/user.
js file will be available at the http://localhost:3000/api/user endpoint, and so on. Note
that these files are not React components, but simple Node.js request/response functions.

While the API routes are powerful Node-based mechanisms that allow you to write your backend
entirely without ever leaving Next.js, they can have different uses in different cases and scenarios. For
instance, we can use these API routes as a proxy for our FastAPI backend, thus hiding it completely
from the frontend in case we want to perform some client-side data fetching. Coupled with the concept
of middleware – essentially, functions that intercept the request and response cycle – we can use them
for securing the entire application or just parts of it and do so in a granular way. While you can (and
by all means should) inspect the API routes documentation on the Next.js website, let’s see how it can
help us with our task of authenticating and authorizing users.

In the previous chapter, we have seen how JWT-based authentication works, and, since we were using
React, we opted for a rather extreme solution – we didn’t save the JWT anywhere, so any page refresh
or browser closing resulted in a logout, since the JWT was stored only in the Context API. We could
have used the browser’s local storage but there are many reasons to believe that these solutions are
too insecure and risky. Since Next.js API routes run on the same server as our frontend, we can use a
more elegant and secure method and persist the state of the logged user throughout the application.
We will use httpOnly cookies, which are available only through HTTP and are inaccessible to
JavaScript. Since both the frontend and the “backend” (in this case, Next.js’ API routes, not our real
backend) will run on the same server (in development: localhost:3000 by default), we can set
cookies easily. After we get the cookie, we will use it to store the JWT token and provide it to any
subsequent request. Our FastAPI /me route will be used to read the JWT and tell us whether the user
exists or not, whether it’s a regular user or an admin, and so on, and then we will model the page’s
behavior accordingly.

Having laid out our main strategy, let’s move on and tackle the first task: we want to create a Next.js
API route, call it login, and enable it to just POST the credentials data (in FastAPI, we opted for
a combination of email and password) to our real backend (Python) and, if the request should be
successful, send a cookie with the JWT.

Server-Side Rendering and Image Processing with FastAPI and Next.js218

Before we begin refreshing our Node.js knowledge (it is really the bare minimum – just request and
response), we need to stop the Next.js server and install the cookie package in order to be able to set
cookies (note that this package isn’t particularly tied to Next.js itself):

npm i cookie

In the /pages/api folder, create a file called login.js (the naming is important!) and start
writing some Node.js code:

import cookie from 'cookie'

export default async (req, res)=>{

 if (req.method==='POST'){

 const {email, password} = req.body

 const result = await fetch

 ('http://127.0.0.1:8000/users/login', {

 method:'POST',

 headers:{'Content-Type':'application/json'},

 body:JSON.stringify({email, password})

 })

 const data = await result.json()

 if (result.ok){

 const jwt = data.token

 res.status(200).setHeader('Set-Cookie',

 cookie.serialize(

 'jwt',jwt,

 {

 path:'/',

 httpOnly: true,

 sameSite:'strict',

 maxAge:30

 }

)).json({

 'username':data['user']['username'],

 'email':data['user']['email'],

 'role':data['user']['role'],

 'jwt':jwt

 })

Introduction to Next.js and our frontend project 219

 } else {

 data['error'] = data['detail']

 res.status(401)

 res.json(data)

 return

 }

 } else {

 res.setHeader('Allow',['POST'])

 res.status(405).json({message:`Method ${req.method}

 not allowed`})

 return

 }

}

The code is pretty straightforward; there are just a couple of checks that make it a bit longer, but they
are important. Let’s see how it works: first, it is a typical Node.js async request/response function – we
first check whether the method is right as we do not want to proceed with anything that is not a POST
request. After having read the body of the request (the email and password pair), we pass them to a
fetch request to our FastAPI server, making sure to set the content type to JSON and the method to
POST. After we get the response from FastAPI, we check whether it’s OK and proceed to set a cookie
through the header. The options passed to the cookie serializer are the following: path set to /, which
means that the cookie will be sent throughout the entire application, all the URLs, httpOnly is
true since this was the whole point, so to speak, sameSite is set to strict, and maxAge is the
duration of the validity of the cookie in seconds – here, I opted for a very short amount of time, just
30 seconds, so we can test things out, but ideally it should match the duration of the JWT itself and
be around 60*60*24*7 minutes or about a week for this type of website.

Test the following endpoint with HTTP:

(venv) λ http POST http://localhost:3000/api/login
email="marko@gmail.com" password="marko"

You should get a response similar to this one:

HTTP/1.1 200 OK

Set-Cookie: jwt=eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJleHAiO-
jE2NTcxNDUxOTYsImlhdCI6MTY1NzEyMzU5Niwic3ViIjoiNjJiZjU5MWM3N-
2M3OWUxYTkwMmUwNTZhIn0.JKn-QcQ3DVaUZA_tAzQaDZnylFPY40qQDtWd-
FSOYdVA; Max-Age=30; Path=/; HttpOnly; SameSite=Strict

Vary: Accept-Encoding

{

Server-Side Rendering and Image Processing with FastAPI and Next.js220

 "email": "marko@gmail.com",

 "role": "ADMIN",

 "username": "marko"

}

All the data seems to be there – the set cookie and the data that we passed along with the cookie. We
can now head over to the /pages/login.jsx page – a “proper” page – and create our login
component. It is going to be very simple – just a form connected to the previously created /api/
login API route. Once the correct credentials are provided, the cookie will be set. Later, we will
discuss how we are going to use this cookie, but for now, let’s just set it from our frontend. Let’s now
update our Login.jsx page in the /pages folder and enable the user to actually log in, using our
login API route. Open the Login.jsx page and edit it:

import { useState } from "react";

const login = () => {

 const [email, setEmail] = useState("");

 const [password, setPassword] = useState("");

 const handleSubmit = async (e) => {

 e.preventDefault();

 const res = await fetch('api/login', {

 method: "POST",

 headers: { "Content-Type": "application/json" },

 body: JSON.stringify({ email, password }),

 });

 const data = await res.json();

 };

We aren’t doing anything special here: I am using just a couple of state variables in order to have two
controlled inputs in our form, preventing the form from submitting by default and sending the email/
password combination to our API route through a POST request to the Next.js API route. The rest of
the functional component is mainly used for rendering the form:

return (

 <div className="flex flex-col justify-center items-center

 h-full">

 <h2 className=" text-orange-500 font-bold text-

 lg">Login</h2>

{error && (

 <div className="border-2 text-red-700 font-bold p-5">

Introduction to Next.js and our frontend project 221

 {error.detail}

 </div>

)}

 <div>

 <form className=" max-w-md flex flex-col justify-center

 items-center"

 onSubmit={handleSubmit}>

 <label className="block">

 Email

 <input

 type="email"

 className="mt-1 block w-full"

 placeholder="your email"

 required

 onChange={(e) => setEmail(e.target.value)}

 value={email}

 />

 </label>

 <label className="block">

 Password

 <input type="password" required

 className="mt-1 block w-full"

 onChange={(e) => setPassword(e.target.value)}

 value={password}

 />

 </label>

 <button className=" bg-orange-500 text-white p-2 m-3

 w-full rounded-lg">Log in</button>

 </form>

 </div>

 </div>

);

};

export default login;

Server-Side Rendering and Image Processing with FastAPI and Next.js222

If we test this page and submit our credentials, we will get an HTTP-only cookie and ideally, we
should redirect the user to the home page. We are also displaying the error from FastAPI in case the
email and password do not match, but this is all less important now. We have the cookie, and it will
persist through page refreshes and the app being closed! While we’re at it, let’s implement a rather
rudimentary but effective way of destroying the cookie – we will create an API route called logout.
js in the API folder:

import cookie from 'cookie'

export default async (req, res)=>{

 res.status(200).setHeader('Set-Cookie', cookie.serialize(

 'jwt','',

 {

 path:'/',

 httpOnly: true,

 sameSite:'strict',

 maxAge:-1

 }

)

).end()

}

This rather silly route doesn’t take any parameters and doesn’t return anything useful. Rather, it sets
the token to a blank value and makes it expire instantly (maxAge:-1).

We are now able to obtain and destroy cookies that are HTTP only, therefore, not accessible through
JavaScript, and we made sure that our FastAPI routes in the backend are secured.

Now, we face two different but highly related problems: we want to be able to keep track of this
logged-in status and the type of user throughout the entire application, and we want to be able to
filter out some pages completely, depending on the role of the authenticated user. I want to point out
again that all this code is by no means meant for any kind of production site and that we cannot hope
to be able to replicate the robustness, security, and ease of use of branded solutions such as Auth0,
Amazon Cognito, Firebase, and the like. It is just a, hopefully, useful introduction to what is possible
with Next.js and really any REST API that is secured via JWT, since we are not doing anything Python-
specific at this point.

Introduction to Next.js and our frontend project 223

React Context API and custom hook

In order to make our app at least a bit more pleasant to work with, we will create (again) a Context
for authentication, and it will not differ very much from what we did with plain React. Create a folder
called /context in the root of our project and create an AuthContext.js file inside:

import { createContext, useState } from "react";

const AuthContext = createContext({})

export const AuthProvider = ({children}) => {

 const [user, setUser] = useState(null)

 const [authError, setAuthError] = useState(null)

 const [loading, setLoading] = useState(false)

 return <AuthContext.Provider value={{user, setUser,

 authError, setAuthError, loading, setLoading}}>

 {children}

 </AuthContext.Provider>

}

export default AuthContext

This mechanism was already dissected in Chapter 7, Authentication and Authorization, so I will not
repeat the explanations. As with the React project, we will create a custom hook in order to make the
context easier to work with. Create a folder called /hooks in the root of the project, and create the
useAuth.js file:

import { useContext } from "react";

import AuthContext from "../context/AuthContext";

const useAuth = () => {

 return useContext(AuthContext)

}

export default useAuth;

The hook enables us to plug into the context quickly anywhere we might need it. In Next.js, the most
logical place to put the context is the _app.js component, since it encompasses the entire app.
Open _app.js and edit it:

import '../styles/globals.css'

import Header from '../components/Header'

import Footer from '../components/Footer'

import {AuthProvider} from '../context/AuthContext'

function MyApp({ Component, pageProps }) {

Server-Side Rendering and Image Processing with FastAPI and Next.js224

 return (

 <AuthProvider>

 <div className="min-h-screen flex flex-col container

 p-5">

 <Header />

 <div className="flex-1 "><Component {...pageProps}

 /></div>

 <Footer />

 </div>

 </AuthProvider>

)

}

export default MyApp

Updating the Login.jsx component

Now our whole application is “aware” of the context and we provided just a couple of state variables
and their setters: user, setUser for the user, the same for the error, and a pair of setLoading
and loading for the loading stage since we’re going to try to get the user from the /me route from the
cookie’s JWT. Now we can modify the Login.jsx page to accommodate the context. The rendered
part is not altered, only the function:

import { useState } from "react";

import { useRouter } from "next/router";

import useAuth from "../../hooks/useAuth";

const login = () => {

 const [email, setEmail] = useState("marko@gmail.com");

 const [password, setPassword] = useState("marko");

 const [error, setError] = useState(null);

 const { setUser } = useAuth();

 const router = useRouter();

 const handleSubmit = async (e) => {

 e.preventDefault();

 const res = await fetch("/api/login", {

 method: "POST",

 headers: { "Content-Type": "application/json" },

 body: JSON.stringify({ email, password }),

Introduction to Next.js and our frontend project 225

 });

 if (res.ok) {

 const user = await res.json();

 setUser(user);

 router.push("/");

 } else {

 const errData = await res.json();

 console.log(errData);

 setError(errData);

 }

 };

In this new version, the Login function does a bit more – after obtaining (hopefully!) the user data,
it sets the context to the logged-in user and redirects us to the home page, making use of the Next
Router, a simple hook that enables programmatic navigation.

While we’re at it, let’s create a Logout.jsx component for logging the user out. The procedure is
the same – destroy the cookie by making it expire immediately, set the context to a null user, and
redirect to the home page:

import { useRouter } from "next/router";

import { useEffect } from "react";

import useAuth from "../../hooks/useAuth";

const logout = () => {

 const { user, setUser } = useAuth();

 const removeCookie = async () => {

 const res = await fetch("http://127.0.0.1:3000/api/logout",
{

 method: "POST",

 headers: { "Content-Type": "application/json" },

 });

 };

 const router = useRouter();

 useEffect(() => {

 removeCookie();

 setUser(null);

 router.push("/");

 }, []);

Server-Side Rendering and Image Processing with FastAPI and Next.js226

 return <></>;

};

export default logout;

Now it is time to update our Header.jsx file and make our navigation user-aware; if the user is
logged in, we want to display their username and maybe enable some menu items that would otherwise
be unavailable. But more importantly, we want to check whether the cookie containing a (valid) JWT
is present and if so, load the user automatically by using the useEffect hook. Open up Header.
jsx and begin editing it:

components/Header.jsx

import Link from "next/link";

import useAuth from "../hooks/useAuth";

import { useEffect } from "react";

const Header = () => {

 const { user, setUser, authError, setAuthError, setLoading,
loading } = useAuth();

 useEffect(() => {

 setLoading(true);

 (async () => {

 const userData = await fetch("/api/user");

 try {

 const user = await userData.json();

 setUser(user);

 } catch (error) {

 setUser(null);

 }

 })();

 setLoading(false);

 }, []);

After importing our useAuth custom hook, we get access to all of our context data and we can
conditionally show or hide menu items. If there is no user logged in, we want to show the register
and login menu items, otherwise, the logout button and maybe some information on the current user.
We also take this opportunity to insert a useEffect hook, a function that will fire off and try to
verify our cookie. If a cookie is found and a valid user is retrieved, we set the setUser function to
that user and it will be available throughout the app; if not, we set the user to be null. In between, I

Introduction to Next.js and our frontend project 227

threw some isLoading states in case we want to inform the user that we are trying to retrieve the
data from the API. The rest of the component is similar to what was previously written, except for
some user-checking logic:

 return (

 <div className=" text-orange-600 py-2 font-bold flex flex-

 row justify-between items-center">

 <div>

 {loading ? Loading... : ""}

 <Link href="/">

 <a>

 FARM Cars

 {user ? (

 {user.username} ({user.role})

) : (

 ""

)}

 </Link>

 </div>

 <ul className="flex flex-row space-x-4 ">

 <Link href="/cars">

 <a>Cars

 </Link>

 {user && user.role === "ADMIN" ? (

 <Link href="/cars/add">

 <a>Add Car

 </Link>

) : (

 ""

)}

Server-Side Rendering and Image Processing with FastAPI and Next.js228

 {!user ? (

 <>

 <Link href="/account/register">

 <a>Register

 </Link>

 <Link href="/account/login">

 <a>Login

 </Link>

 </>

) : (

 <>

 <Link href="/account/logout">

 <a>Log out {user.username}

 </Link>

 </>

)}

 </div>

);

};

export default Header;

Next.js middleware

The menu now works as expected and the New Car item will not be visible in the menu. However,
the page still exists, and it can be reached even if we are not logged in; you can try to navigate to the
page, and it will load. You shouldn’t be able to insert new car ads because, without the cookie, you will
not have a valid JWT to provide to the FastAPI server, but we do not want to give access to the page
anyway. Yes, I know that the page doesn’t contain any form or means to input data; the point is that
the page shouldn’t be available to anonymous users. While we could use our context API and verify
the absence or presence of users and act accordingly, we could also use higher-order components, as
we did with React Router. Instead, I want to showcase another very cool and useful feature of Next.
js – the middleware.

Introduction to Next.js and our frontend project 229

Next.js middleware is essentially a set of user-defined functions that allows us to tap into the request-
response cycle of Next.js and perform various operations, such as performing checks, setting and
reading cookies, redirecting and modifying responses, and so on. While the features are documented
on the Next.js website (https://nextjs.org/docs/advanced-features/middleware),
you might be familiar with a similar concept if you have ever used Django or Express. Bear in mind
that even FastAPI has a very similar feature of the same name! Let’s follow the instructions from the
documentation. As with other “special” files such as _document.js and _app.js, middleware
lives in a file called middleware.js at the same level as our /pages folder. I will just make a
half-functional example here. I want to check for the mere existence of a cookie named jwt. If this
cookie is present, users can proceed to the /cars/add page; otherwise, they will be redirected to
the login page when trying to reach the said page:

import { NextResponse } from "next/server";

export function middleware(req){

 const url = req.url

 const cookie = req.cookies.get('jwt')

 if(url.includes('/cars/add') && (cookie===undefined)){

 return NextResponse.redirect('http://localhost:3000/

 account/login')

 }

 return NextResponse.next()

}

We imported just the NextResponse class from the “next/server” but feel free to explore other
middleware goodies. After the import, we export a single function called middleware (again, the name
is important) that takes in the request object and the response, which we won’t use, so it is omitted.
We then take the URL of the request (which will match every request on the site because middleware
runs on every request) and try to find a cookie named jwt. Finally, there goes our condition – if the
URL includes /cars/add and there is no cookie called jwt (matches undefined), we redirect to /
account/login. Otherwise, we call the next() page.

Now, if you are not logged in and try to go to the /cars/add page, you should immediately get
redirected to the /account/login page. Middleware in Next.js is still a pretty new feature, but it
is very powerful and can be used for many advanced use cases. Notice that here we are redirecting to
our development localhost address, so this code should be refactored and the Next.js server address
should be included in the .env.local site!

Implementing authentication flows by ourselves is a good learning experience and we should probably
leave it at that. I want to point out again that there are numerous excellent authentication solutions
both for the React/Next.js world and for FastAPI. Still, if you are new to the React Context API and
to the world of hooks, implementing even a rudimentary authentication solution similar to the one

https://nextjs.org/docs/advanced-features/middleware

Server-Side Rendering and Image Processing with FastAPI and Next.js230

presented in this chapter can help you grasp the majority of the moving parts involved in a full-stack
project (in our case, a FARM stack project) and help you even in other similar technologies (Vue.js,
Svelte, Node.js, Django REST framework, and so on).

Creating the page for inserting new cars

To complete our Next.js app, we are going to add just a couple of pages – the ones that actually have
something to do with our initial purpose: building a car sales app. First, we need to create a page for
adding cars, and this page is already “protected” by our Next.js middleware – only logged-in users can
access the page and we know that only logged-in users can POST to our FastAPI backend. For this
page, we are going to install two new Node.js packages: Axios (for structuring our API calls) and
cookies-next, for reading our cookie from Next.js, extracting the JWT, and supplying it to the
API call for creating a new car via a POST request. Stop the Next.js server and install the packages:

npm i axios cookies-next

Now we have everything in place, and we can begin creating our add.jsx page in the /cars folder:

import { useState } from "react";

import axios from "axios";

import { useRouter } from "next/router";

import { getCookie } from "cookies-next";

export const getServerSideProps = ({ req, res }) => {

 const jwt = getCookie("jwt", { req, res });

 return { props: { jwt } };

};

We are using useState for making our form inputs controlled, axios for the API call, the
Next Router for navigating away from the page when we are done, and the getCookie function
from the cookies-next package because we want to read the server-side cookies. In order to
be able to use data from the server-side directly, Next.js provides us with a custom function called
getServerSideProps that will be the centerpiece of our server-side page generation process.

getServerSideProps is one of the most important custom functions in the Next.js universe,
as it enables us to get data from the server, pass it to the page as props, and then pre-render the page
at request time. Normally, we use it to get data about the entity or group of entities that we want to
display on a page, but in this case, we use it a little differently; we read the value of our JWT from the
cookie that we obtained when logging in and we pass it to the page through props.

Next, we set up a bunch of stateful values for our form, but this should really be handled by a form
library, as we did previously in the chapter on React:

const add = ({ jwt }) => {

 const [brand, setBrand] = useState("");

Introduction to Next.js and our frontend project 231

 const [make, setMake] = useState("");

 const [year, setYear] = useState("");

 const [cm3, setCm3] = useState("");

 const [price, setPrice] = useState("");

 const [km, setKm] = useState("");

 const [picture, setPicture] = useState(null);

 const [loading, setLoading] = useState(false);

 const router = useRouter();

Besides the form fields, we set up a loading state and instantiate the Next router – the React hook
we already used for programmatic navigation when the request is completed. Now, we get to the
important part of the component:

 const handleSubmit = async (e) => {

 e.preventDefault();

 const formData = new FormData();

 formData.append("brand", brand);

 formData.append("make", make);

 formData.append("year", year);

 formData.append("km", km);

 formData.append("cm3", cm3);

 formData.append("price", price);

 formData.append("picture", picture);

 setLoading(true);

The handleSubmit function will fire up when the user tries to submit the form, so first, we prevent
the default form submit action and then we create a new FormData instance, appending all the
values obtained from the states. Next, we try to make our API call, in this case using Axios instead
of Fetch (which we have used until now):

 try {

 const response = await axios({

 method: "POST",

 url: "http://localhost:8000/cars/",

 data: formData,

 headers: {

 "Content-Type": "multipart/form-data",

Server-Side Rendering and Image Processing with FastAPI and Next.js232

 Authorization: `bearer ${jwt}`,

 },

 });

 } catch (error) {

 console.log(error);

 }

 setLoading(false);

 router.push("/cars");

 };

The important part is that now (since we have an image, thus, a file, to send), we must use multipart/
form-data – that is why we made our Python FastAPI REST server accept form data instead of
JSON. We also set the authorization using the JWT coming from the cookie. The function ends up
redirecting us to the /cars page. In a realistic app, a friendly message for the user would be nice.
Finally, we get to construct the form:

 {!loading ? (

 <form

 className=" max-w-md flex flex-col justify-center

 items-center"

 onSubmit={handleSubmit}

 >

 <label className="block">

 Brand

 <input

 name="brand"

 id="brand"

 type="text"

 className="mt-1 block w-full"

 placeholder="car brand"

 required

 onChange={(e) => setBrand(e.target.value)}

 value={brand}

 />

 </label>

Introduction to Next.js and our frontend project 233

I will omit the remaining fields (for the make, year, cm3, price, and km) for brevity, since they are
identical – except the numeric ones are, well, set to number inputs. The picture field, however, is
the following:

<label className="block">

 Picture

 <input name="picture" id="picture" type="file"

 className="mt-1 block w-full"

 onChange={(e) =>setPicture(e.target.files[0])}

 required />

</label>

<button className="bg-orange-500 text-white p-2 m-3 w-full

 rounded-lg ">Submit</button>

</form>

) : (

 <></>

)}

 {loading && (

<div className=" bg-orange-600 w-full min-h-full text-white

 flex flex-col justify-center items-center">

<p className=" text-xl">Inserting new car</p>

</div>

)}

 </div>

);

};

export default add;

The file field provides an array of files by default, so we take the one with the index equal to zero
(the first one) and we send it to the useState function. All the fields are required in the HTML,
although additional validation would be necessary. Finally, we use the loading variable to display an
ugly loading div while the file is being uploaded (for large pictures, it can take some time, depending
on your connection!).

If you test the /cars/add page, you should be able to insert some car pictures (or really any pictures)
and some data, and the images should be resized (by Cloudinary) and posterized by Python Pillow!
Let’s create the most important pages now – the list of all cars and the individual car pages. I will not
spend any time making them pretty, so be warned.

Server-Side Rendering and Image Processing with FastAPI and Next.js234

Creating the car list page

I have already mentioned that Next.js allows us to use three distinct page rendering methods: pure
client-side rendering with React, server-side rendering, where pages are prerendered on the server
and then sent to the browser (similar to Django and other old-school frameworks), or completely
statically generated (SSG). For the car list page, we will use server-side generation, while the individual
pages will be statically generated.

We will make use of the getServerSideProps function to get the cars from our API and then
use them to construct our page – the function we’ve already used in order to get the cookie. We could
have opted for a different strategy, but this is the most common approach in our type of scenario – we
have a semi-dynamic website, so to speak: data should change and be updated, but not very often, so
users will not miss important last-minute notifications. Let’s open the /cars/index.jsx page:

import Card from "../../components/Card"

export const getServerSideProps = async () => {

 const res = await fetch(`${process.env.NEXT_PUBLIC_API_
URL}/cars/`);

 const cars = await res.json();

 return {

 props: {

 cars,

 revalidate: 10,

 },

 };

};

After importing a still non-existing Card component that will be used for displaying the cars, we
implemented a very simple async getServerSideProps function; it just makes a call to the API
(we do not need any cookies or a JWT since this endpoint is not protected!), returns the resulting array
of cars as JSON, and sets the revalidate to 10 seconds. This is the amount of time after which a
page will be regenerated. The cars variable in props will be passed to our component:

const Cars = ({ cars }) => {

 return (

 <div>

 <h1>Cars</h1>

<div className="grid lg:grid-cols-4 grid-cols-3 gap-3">

 {cars.map((car) => {

 const {_id, brand, make, picture, year, km, cm3,

 price} = car

Introduction to Next.js and our frontend project 235

 return (

 <Card

 key={_id}

 brand={brand}

 id={_id}

 make={make}

 url={picture}

 year={year}

 km={km}

 cm3={cm3}

 price={price}

 />

);

 })}

 </div> </div>

);

};

export default Cars;

The rest of the component is trivial; we pass all the individual car props to the Card component and
we lay them in a grid. For the Card component, I wanted to plug in another way of using Cloudinary:
the npm package called cloudinary-build-url. The package works together with Next.js and
helps us create transformations, apply filters, or resize images on a component or page level. Stop the
server and install the package:

npm i cloudinary-build-url

Card.jsx lives in the /components folder and is rather simple, with a little twist:

import Image from 'next/image'

import Link from 'next/link'

import { buildUrl } from 'cloudinary-build-url'

const transformedUrl = (id)=> buildUrl(id, {

 cloud: {

 cloudName: '<my cloud name>',

 },

 transformations: {

 effect: {

 name: 'grayscale'

Server-Side Rendering and Image Processing with FastAPI and Next.js236

 },

 effect: {

 name: 'tint',

 value: '60:blue:white',

 }

 }});

Our images are getting completely mauled by the various filters and transformations, but I wanted
to showcase the different stages at which you can apply image transformations – at the upload stage,
before the upload stage with Python and Pillow, and even when we are already in Next.js. buildUrl
is straightforward: you need to create a function that will take in the ID or URL of your image, provide
the cloud name, and list the transformations that you wish to apply. In a real-world scenario, one of
these image stages should be more than enough:

const Card = ({brand, make, year, url, km, price, cm3, id}) =>
{

 return (

 <Link href={"cars/" + id}>

 <div className="max-w-sm rounded overflow-hidden

 shadow-lg cursor-pointer hover:scale-105

 transition-transform duration-200">

 <div className="w-full"><Image src=

 {transformedUrl(url)} alt={brand} height={300}

 width={600} /></div>

 <div className="px-6 py-4">

 <div className="font-bold text-xl mb-2">{brand}

 {make}</div>

 <p className="text-orange-600 font-bold">Price:

 {price} EUR</p>

 <p className="text-gray-700 text-base">

 A detailed car description from the Cars FARM

 crew.

 </p>

 </div>

 <div className="px-6 pt-4 pb-2">

 <span className="inline-block bg-gray-200 rounded-full

 px-2 py-1 text-sm font-semibold text-gray-700 mr-2

Introduction to Next.js and our frontend project 237

 mb-2">made in {year}

 <span className="inline-block bg-gray-200 rounded-full

 px-2 py-1 text-sm font-semibold text-gray-700 mr-2

 mb-2">Cm3:{cm3}

 <span className="inline-block bg-gray-200 rounded-full

 px-2 py-1 text-sm font-semibold text-gray-700 mr-2

 mb-2">Km:{km}

 </div>

</div>

</Link>

)

}

export default Card

The rest of the component is really just a bunch of Tailwind classes. If we try this, however, we will get a
pretty descriptive error, stating that we haven’t whitelisted the Cloudinary domain in the Next.js settings
and thus our images cannot be displayed. Head over to the next.config.js file in the root of our
project and edit it quickly:

module.exports = {

 images: {

 domains: ['res.cloudinary.com'],

 },

}

This way, we are able to show images from the Cloudinary domain and if we should add other media
sources, we would have to list them in this file.

Creating statically generated pages for individual cars

Our final part of this application will be to create individual pages for the cars. Since we will fetch our
cars by their unique IDs generated by MongoDB and then converted to a plain string, we will make
use of Next.js’s dynamic routes. Similar to React Router, Next.js offers a simple and effective way of
creating pages based on a URL query. All we need is a special name for the page, enclosed in brackets,
with the name of the parameter that we want to use for querying. In plain words, if we name a page/
component [slug].jsx in a /articles folder, we will be able to reference the slug value in a
URL in the form /articles/first in our code as a variable slug equal to “first.” Please do not
take my contorted explanation for granted and head over to the Next.js routing tutorial, https://
nextjs.org/docs/routing/introduction; it is thorough and simple.

https://nextjs.org/docs/routing/introduction
https://nextjs.org/docs/routing/introduction

Server-Side Rendering and Image Processing with FastAPI and Next.js238

Let’s create a new page in our /pages/cars folder, name it [id].jsx, and start editing it:

import Image from "next/image";

export const getStaticPaths = async () => {

 const res = await fetch(`${process.env.NEXT_PUBLIC_API_URL}/

 cars`);

 const cars = await res.json();

 const paths = cars.map((car) => ({

 params: { id: car._id },

 }));

 return { paths, fallback: "blocking" };

};

export const getStaticProps = async ({ params: { id } }) => {

 const res = await fetch(`${process.env.NEXT_PUBLIC_API_URL}/

 cars/${id}`);

 const car = await res.json();

 return {

 props: { car },

 revalidate: 10,

 };

};

After importing the Next Image component for rendering the picture, we have a Next.js function,
getStaticPaths, which makes an API request and has to return all our unique identifiers that
will be used for constructing the single car pages. Since we opted for the ID as the unique identifier,
we are making a fetch request to get all the cars and then mapping through the array of cars in
order to get just the IDs. In other cases, you might use unique article slugs based on the title and some
combination of date or author. It is important, however, to keep this array filled with unique values that
will enable us to get to the respective pages to be generated on the server side. This function returns
a variable called paths enclosed in an object and additional options. The Next.js documentation
recommends using getStaticPaths when statically pre-rendering pages that use dynamic routes
– data coming from CMSs, databases, filesystems, and so on – so it perfectly fits our needs. We want
the individual car pages to be statically rendered, indexed by crawling engines, and fast.

Introduction to Next.js and our frontend project 239

getStaticProps is the function that must be used with getStaticPaths and is responsible
for generating the individual pages, based on the paths provided by the previous function. In our
case, it takes the IDs as parameters, performs fetch requests in order to get the necessary data, and
passes it to the page under props. From there on, we are creating a normal React, albeit static, page
with the incoming car props:

const CarById = ({ car }) => {

 return (

 <div className="flex flex-col justify-center items-center

 min-h-full">

 <h1 className="text-xl font-bold text-gray-700">

 {car.brand} - {car.make}

 </h1>

 <div className=" bg-white p-5 shadow-md rounded-lg">

 </div>

 <div className=" text-gray-500 m-5">{`This fine car was

 manufactured in ${car.year}, it made just ${car.km}

 km and it sports a ${car.cm3} cm3 engine.`}</div>

 <div className="text-gray-500 font-bold">Price: {car.

 price} eur</div>

 </div>

);

};

export default CarById;

Again, just an ugly page for the car, but prerendered on the server for all the cars in the database (or
in the query).

There are numerous other features and even bare minimum requirements that our app is lacking, but
we have no space to implement them all. We would probably want a Registration page in case users
should register, and we lack basic interactions – messaging, comments, inquiries, or similar. That is
not the point here, however; the sole purpose of the section was to give you a taste of the powerful
FastAPI/MongoDB/Next.js combination. With server-side rendering, our applications can be blazingly
fast, but only if we use the tools at our disposal correctly!

It is worth mentioning that the page completely lacks any meta information, but the documentation
on using the Head component (https://nextjs.org/docs/api-reference/next/
head) is extensive and straightforward.

https://nextjs.org/docs/api-reference/next/head
https://nextjs.org/docs/api-reference/next/head

Server-Side Rendering and Image Processing with FastAPI and Next.js240

Deployment to Heroku and Vercel
To conclude this chapter and have a well-rounded, albeit incomplete, project, we will now deploy
our backend (FastAPI) to Heroku and our frontend to Vercel, a Platform-as-a-Service and hosting
company that is, incidentally, the creator of Next.js.

You should already have a Heroku account if you followed the workflow described in Chapter 3,
Getting Started with FastAPI so we will now proceed and create an account on Vercel. You can and
should log in with your GitHub account since your deploys will be automatic from your repository
once you set up the project. The process of deploying FastAPI to Heroku has already been discussed
in Chapter 5, Building the Backend for Our Application – we just need to pass additional environment
variables from our /backend/.env file, the new MongoDB database name, and Cloudinary data.

A personal note
Heroku seems to dislike when the requirements.txt file contains the packages’ version
numbers – I guess it needs to figure the dependency tree by itself, so if you want to save yourself
some time, try to remove the version numbers.

We will now turn our attention to Vercel. After creating an account by logging in with GitHub, you
should already have added a repository within your /next-cars folder. If not, do it now, stop the
Next.js server, and add the code:

git add .

Then, create a commit:

git commit -m "deployment to Vercel"

After you create the repository on GitHub and add the origin, you can push the changes to your main
branch:

git push origin main

Now, heading over to Vercel, click the blue Deploy button and head over to https://vercel.com/
new. Here, we can choose our next-cars repository and import it. The next step is to insert our
environment variables; in my case, the API address on Heroku was https://calm-cove-22493.
herokuapp.com (without the trailing slash!), so I used it for NEXT_PUBLIC_API_URL.

After hitting the Deploy button, the process will begin and you will be able to monitor it throughout
the stages – preparation, generations of pages, and so on. Vercel is very verbose, so in case of some
problems, you should be able to debug it and fix the issues.

After a, hopefully, successful deployment, Vercel will throw some confetti around and guide you to
test the website on a custom URL. The application for this chapter is deployed on https://next-
cars-two.vercel.app/.

https://vercel.com/new
https://vercel.com/new
https://next-cars-two.vercel.app/
https://next-cars-two.vercel.app/

Deployment to Heroku and Vercel 241

Figure 8.4 – The Vercel project configuration page and the Deploy button

The Vercel deployment page (Figure 8.4) is very informative and dynamic. It allows us to set environment
variables and customize the deployment settings (we won’t do it here, though) and it informs us of
the deployment status as it goes through various stages. Errors, should they arise, are displayed in the
tabs below the Deploy title and allow for a quick and informative log-checking.

Server-Side Rendering and Image Processing with FastAPI and Next.js242

The deployment of Next.js on Netlify is very similar, with the environment variables setting process
and the automatic deploys from GitHub, but we will examine this process with React.js in the
forthcoming chapter.

Summary
In this chapter, you were introduced to Next.js – an incredibly feature-rich and powerful React-based
framework, suitable for building all kinds of websites and apps. We covered server-side generation
(SSG) and server-side rendering (SSR), as well as a more robust authentication system, using
httpOnly cookies and API routes. You have learned the very basics of Next.js development and are
now familiarized with the most interesting features and differences from plain React development. You
have learned different ways of integrating images (or media files in general) into a complex pipeline,
based on Cloudinary and Python Pillow and the powerful Next Image component. Finally, you were
able to deploy your Next.js app on Vercel, a premier deployment solution, and put the GitHub repository
into a continuous delivery and deployment pipeline. We’ve covered a lot of ground!

In the next chapter, we are going to go back to plain React and explore some topics that really set
our FastAPI background apart from other REST API solutions, such as a (super-simple) regression
system, some dashboard/data visualization, report generation, and serving them through an API.

9
Building a Data Visualization

App with the FARM Stack

We have covered a lot of ground – we have seen how FastAPI and React can blend and allow our
MongoDB data store to shine, passing data back and forth.

In this chapter, we will build yet another little application that should enable us to showcase other,
different types of functionalities that might be easier to achieve with this particular stack than with
other technologies. We will create an admin application in React using Create React App (as we
learned about in Chapter 4, Setting Up a React Workflow) and we will try to quickly achieve some
goals by creating a simple reporting application with fast pagination and some data visualizations.
During the process, we will try to leverage Python’s vast package ecosystem, as well as the simplicity
of the MongoDB aggregation framework.

We will try to examine the process of data fetching and data visualization from different aspects and
discuss the possibilities, while we implement a rather simple, yet effective solution. In this chapter,
we will also discuss FastAPI’s Background Tasks feature and how it can help us when dealing with
long-running processes that shouldn’t be awaited by the user while using the website. Stay tuned,
because this should be fun!

In this chapter, we will cover the following main topics:

• Stale-while-revalidate (SWR) – a better way of data fetching with the SWR library, including
result pagination, cache invalidation, data refreshing, and more

• Revisiting the MongoDB aggregation framework and creating a couple of endpoints (URLs)
for our analytics application

• Data visualization options and a few simple implementations with Chart.js

• Setting up an email service with SendGrid and integrating it with our REST API

• Integrating a simple Machine Learning algorithm

Building a Data Visualization App with the FARM Stack244

Technical requirements
The technical requirements for this chapter are no different than for the previous chapters – you
will need to have a working Python installation (version 3.6 or later, but for package compatibility
reasons, it would probably be better to have a newer one, such as 3.9+), and to have Node.js and npm
installed (Node.js version 14 or later). The code in this chapter will be deployed on a Ubuntu server,
so having access to a Linux – Debian machine would be beneficial, although if you want to perform
the actual deployment on a DigitalOcean Droplet in the next chapter, you can use Secure Shell (SSH)
from Windows. If you want to follow the part where we integrate a machine learning pipeline, install
scikit-learn.

The specification
I have always felt that it is better if I know upfront upon reading something what I shall be building
and what its goal is. Even a vague specification is better than no specification at all, so in this spirit,
let’s turn to our imaginary scenario again:

The management would like to have a way to quickly browse all the cars in the database and have an
overview of them – how many Volkswagens or Fiat Puntos are available, what the average production
year is, and so on (this one is pretty vague, but we get the idea). The management would also love to
receive and be able to send automated reports about cars that have been added in the last 7 or 30 days.

Armed with our FARM stack knowledge, we know that we can tackle this, but what’s more important
is that we know that we will also be able to address future requests, modifications, and features, while
using the same technologies and finding a very cheap (or free!) deployment solution to kickstart our
project. Let’s begin.

Creating the backend
While we will be working with the same data, this chapter will employ a significantly simplified backend
for our purposes, as we do not need to repeat things that have already been covered. We will create
a new, simpler backend with just some READ routes (GET requests) as we will not need to update,
create, or delete any cars. We will also insert a pretty hefty number of cars into our database – we
need data to work with and we need a realistic number of entities in order to showcase the dashboard
functionalities.

Our plan will be the following:

• Create a new collection inside our Mongo database

• Import the provided sample data from a Comma-Separated Values (CSV) document

• Create a new Python environment and install the required packages

• Scaffold our FastAPI application

Creating the backend 245

• Create some MongoDB aggregations and map them into a FastAPI endpoint

• Finally, we will add some backend functionality that isn’t going to be directly included in our
request/response cycle for sending emails using SendGrid

Let’s start and repeat all the steps that we have already covered in the previous chapters, since I would
like to have a rather self-contained and complete project with a description of all the necessary steps
(especially when it comes to deployment). So, create a folder (mine is called Chapter09), another
folder inside of it called /backend, and follow these steps:

1. From this /backend folder, let’s create a new Python environment:

python -m venv venv

The preceding command will create our virtual environment called venv.

2. We can now proceed to activate it by entering into the /venv/Scripts directory and typing
the following:

activate

3. Let’s return to our /backend directory and install the first dependencies, fastapi,
uvicorn, motor, and python-decouple for environment variables and dnspython
for connecting to Mongo:

pip install fastapi uvicorn motor python-decouple
dnspython

4. Now, we can fire up our Visual Studio Code and open the /backend folder. Let’s start with the
.gitignore and .env files. The .gitignore file is the one that we copied or created in
the previous FastAPI chapters, while the .env file will contain the data about our MongoDB
collection and, later, our SendGrid API key for sending emails.

5. For now, let’s just add the new database name – I called mine dashboard, but you can get
more creative. Now, we will leave Visual Studio Code and open Mongo Compass. Log in to
your MongoDB account, create a new database called dashboard, and a collection named
cars inside.

6. Select the cars collection inside the dashboard database in the menu on the left and find
the big, green Import data button in the middle. It is of paramount importance that you set
the column data types to numbers before proceeding to import for all the columns except for
brand and make – so cm3, price, km, and year should all be numbers.

Building a Data Visualization App with the FARM Stack246

Important Note
Beware! If you decide to import your data through the MongoCompass interface, the IDs of
the documents (cars) will be ObjectId, so our API will not be able to find them by the string
ID. I have included a simple Python script for importing the data cast into our model so we can
get nice simple string _id fields. In this project, we will not be making use of any individual
car endpoints, but I feel that it is important to emphasize this fact.

After hitting the IMPORT button, you should have a little below 4,000 records to play with.
That would be a pretty successful company, indeed!

7. Now, we are done with Compass and we can turn to Visual Studio Code – let’s update our .env
file, with our own database credentials:

DB_URL=mongodb+srv://<username>:<password> @cluster0.
fkm24.mongodb.net/?retryWrites=true&w=majority

DB_NAME=dashboard

8. Now that we have a database (we will only be reading from it, no writing!), we can begin building
our API. Let’s create a main.py file in the root of the /backend folder:

from decouple import config

from fastapi import FastAPI

from starlette.middleware import Middleware

from starlette.middleware.cors import CORSMiddleware

As we did previously, we are just importing the bare necessities: FastAPI, decouple’s config
class in order to be able to read our .env variables, and Starlette’s middleware in order to be
able to add CORS middleware:

middleware = [

 Middleware(

 CORSMiddleware,

 allow_origins=["*"],

 allow_methods=["*"],

 allow_headers=["*"],

)

]

from motor.motor_asyncio import AsyncIOMotorClient

from routers.cars import router as cars_router

DB_URL = config("DB_URL", cast=str)

DB_NAME = config("DB_NAME", cast=str)

origins = ["*"]

Creating the backend 247

Again, by now, this will have become second nature to you – we are defining the middleware
and allowing all possible origins (again: not to be done in real production systems!).

9. After these lines, we are importing our faithful motor asynchronous client, a cars router
that we haven’t written yet, and read the .env variables that should allow us to connect to
MongoDB. Let’s finish the main.py file:

app = FastAPI(middleware=middleware)

app.include_router(cars_router, prefix="/cars",
tags=["cars"])

@app.on_event("startup")

async def startup_db_client():

 app.mongodb_client = AsyncIOMotorClient(DB_URL)

 app.mongodb = app.mongodb_client[DB_NAME]

@app.on_event("shutdown")

async def shutdown_db_client():

 app.mongodb_client.close()

Again, nothing really new: we are instantiating our app with the middleware the Starlette way,
adding the router that we are yet to create, and connecting and disconnecting the Mongo client
on startup and shutdown, respectively. I don’t know about you, but I am always eager to start
the API server and right now, we cannot do that – we have to create the cars router.

10. But before that, we need to have our models. Let’s create our models.py file in the root folder:

from bson import ObjectId

from pydantic import Field, BaseModel, validator

class PyObjectId(ObjectId):

 @classmethod

 def __get_validators__(cls):

 yield cls.validate

 @classmethod

 def validate(cls, v):

 if not ObjectId.is_valid(v):

 raise ValueError("Invalid objectid")

 return ObjectId(v)

 @classmethod

 def __modify_schema__(cls, field_schema):

 field_schema.update(type="string")

Building a Data Visualization App with the FARM Stack248

class MongoBaseModel(BaseModel):

 id: PyObjectId = Field(default_factory=PyObjectId,

 alias="_id")

 class Config:

 json_encoders = {ObjectId: str}

This is the standard procedure (I hesitate to call it a hack since I don’t believe it fits that moniker)
for converting our MongoDB ObjectIDs and I wouldn’t comment it again. Let’s see the
actual CarBase model:

class CarBase(MongoBaseModel):

 brand: str = Field(..., min_length=2)

 make: str = Field(..., min_length=1)

 year: int = Field(..., gt=1975, lt=2023)

 price: int = Field(...)

 km: int = Field(...)

 cm3: int = Field(..., gt=400, lt=8000)

The CarBase model is deliberately simplified: we don’t have the userId and we don’t have
the Cloudinary picture file, since we won’t be needing them for the functionality that we want
to show.

11. Now, we can maintain our application structure from before and create a folder, routers, in
the /backend folder. Inside, create an empty __init__.py indicating that it is a Python
module. Then, in the /routers directory, create a cars.py file:

from typing import Optional

from fastapi import APIRouter, Request

from models import CarBase

router = APIRouter()

12. These are our imports – the CarBase model and the instantiation of APIRouter. Let’s add
just one endpoint that lists all the cars (or a subset defined by the query parameters) and allows
for some querying – the same as in the previous chapters:

@router.get("/all", response_description="List all cars")

async def list_all_cars(

 request: Request,

 min_price: int = 0,

 max_price: int = 100000,

 brand: Optional[str] = None,

 page: int = 1,

Creating the backend 249

) -> List[CarBase]:

 RESULTS_PER_PAGE = 25

 skip = (page - 1) * RESULTS_PER_PAGE

 query = {"price": {"$lt": max_price,

 "$gt": min_price}}

 if brand:

 query["brand"] = brand

In this query, we also want to have the number of pages, based on our RESULTS_PER_PAGE
variable for a pagination functionality. For instance, if our query yields 52 results, we will have
three pages: two full pages of 25 results each and one third page with just the last 2 results. So,
we need to get the total number of pages and return it along with the data:

 pages = ceil(

 await request.app.mongodb["cars"].count_
documents(query) / RESULTS_PER_PAGE

)

 full_query = (

 request.app.mongodb["cars"]

 .find(query)

 .sort("km", -1)

 .skip(skip)

 .limit(RESULTS_PER_PAGE)

)

 results = [CarBase(**raw_car) async for raw_car

 in full_query]

 return {"results": results, "pages": pages}

13. ceil is the Python function that rounds a decimal number up, so 52/25 becomes 3. Finally,
we have one endpoint that we can test! Start the Uvicorn web server with the following:

uvicorn main:app --reload

Make sure to issue the command in the root /backend folder with the activated virtual environment.
Now, you should be able to test the http://localhost:8000/cars endpoint and make sure
that it behaves in the way you expect. You will see that the response returns the number of pages,
along with the data itself.

Building a Data Visualization App with the FARM Stack250

The MongoDB Aggregation Framework

We have addressed the aggregation framework, but we haven’t really made much use of it until now.
While it might seem complicated at first sight, it is really intuitive and easy once you get the hang of it.
Instead of delving into the theory and syntax, here you should read about it on the excellent MongoDB
website anyway: https://www.mongodb.com/docs/manual/aggregation/. I will just
describe the endpoints that I want to have for this dashboard and then, we are going to assemble them
within an aggregation pipeline.

The first analytical endpoint that we are going to need is the one that returns us the average prices of
the various car models (the makes) for a fixed brand. This is easily accomplished within the aggregation
pipeline and can be broken into discrete steps:

• Select all cars with a brand matching the desired brand – $match.

• From this selected group of cars, only keep the car features that we actually need – in our case,
the price and the make (or model) – $project.

• Now, we want to group and apply an actual aggregation function! What do we want to group
by? Well, the car model – that’s obvious. What is our aggregation function going to be? Um…
average? Right! And what are we averaging? The price, of course – using $group – but maybe
we would want to do so by kilometers. Or the year of production. It would be nice if we could
make this generic – a function that accepts all of our numerical car features.

• Nobody likes when the query set returns without ordering – at least, I don’t. So, to finish things
off, let’s order our aggregation results by (average) price, starting from the cheapest – $sort.

Broken into steps, the aggregation doesn’t seem so intimidating, and writing it just requires plain
Python dictionaries and dollar signs for the MongoDB-reserved words:

 query = [

 {"$match": {"brand": brand}},

 {"$project": {"_id": 0, "price": 1, "make": 1}},

 {

 "$group": {"_id": {"model": "$make"},

 "avgPrice": {"$avg": "$price"}},

 },

 {"$sort": {"avgPrice": 1}},

]

The only thing that I had some trouble remembering was the mandatory group and id parts, but
we have it covered in the introduction to MongoDB. The rest is pretty straightforward – including
the use of ones and zeros for selecting or deselecting fields to display.

https://www.mongodb.com/docs/manual/aggregation/

Creating the backend 251

Once we have the pipeline in a form of a list of dictionaries, it is no different than a regular query. In
the following code, we have parametrized the price into a generic numeric value called val that we
wish to aggregate upon – it can take values of price, km, cm3, or year, our numerical attributes:

@router.get("/brand/{val}/{brand}", response_description="Get
brand models by val")

async def brand_price(brand: str, val: str, request: Request):

 query = [

 {"$match": {"brand": brand}},

 {"$project": {"_id": 0}},

 {

 "$group": {"_id": {"model": "$make"},

 f"avg_{val}": {"$avg": f"${val}"}},

 },

 {"$sort": {f"avg_{val}": 1}},

]

 full_query = request.app.mongodb["cars"].aggregate(query)

 return [el async for el in full_query]

This query, when the http://127.0.0.1:8000/cars/brand/price/Honda endpoint is
hit, returns a JSON response in the following format:

[

 {

 "_id": {

 "model": "HR_V"

 },

 "avgPrice": 2350.0

 },

 {

 "_id": {

 "model": "Jazz"

 },

 "avgPrice": 4565.555555555556

 }, …

In which _id contains the model or make of the car (the brand is fixed and in this case, it is Honda),
and avg_price contains the result of the averaging aggregation. This format is easy to parse and
can be fit into various visualization solutions, as we will see later.

Building a Data Visualization App with the FARM Stack252

Important Note
We could have gotten rid of this index dictionary right here in Python, but we chose to let it go
up into the frontend. Later, we are going to see that there are many decisions, similar to this one,
that can make or break an application – choosing where to perform certain transformations
and data processing. Remember, we have the MongoDB querying and aggregation layers, then
we have the powerful Python layer – with all imaginable data processing goodies – and finally,
we have ES6, itself a pretty powerful language for data wrangling…

Now, we have a reusable endpoint that aggregates all of our numerical variables! Let’s create a few
more endpoints – we want, for example, to display a pie chart (yes, I know they are evil!) in order to
show how many cars fall into which brand. This is probably the first information that someone in the
company would want to know right away. Essentially, we want to count the number of cars of each brand:

@router.get("/brand/count", response_description="Count by
brand")

async def brand_count(request: Request):

 query = [{"$group": {"_id": "$brand",

 "count": {"$sum": 1}}}]

 full_query =

 request.app.mongodb["cars"].aggregate(query)

 return [el async for el in full_query]

Finally, let’s add another endpoint that we will call /sample – it will come in handy later when
we implement a caching solution. This function returns a sample of the queried collection, with the
only restriction on the car production year. There are some restrictions and guidelines on how to
use sampling (https://www.mongodb.com/docs/manual/reference/operator/
aggregation/sample/) but for our purposes, we just need to know that the endpoint should
return a reasonable amount of cars (less than 100, for instance). Armed with a knowledge of how to
integrate aggregation pipelines into FastAPI routes, this one is simple:

@router.get("/sample/{n}", response_description="Sample of N
cars")

async def get_sample(n: int, request: Request):

 query = [

 {"$match": {"year": {"$gt": 2010}}},

 {

 "$project": {

 "_id": 0,

 }

 },

https://www.mongodb.com/docs/manual/reference/operator/aggregation/sample/
https://www.mongodb.com/docs/manual/reference/operator/aggregation/sample/

Building the frontend with SWR and Charts.js 253

 {"$sample": {"size": n}},

 {"$sort": {"brand": 1, "make": 1, "year": 1}},

]

 full_query =

 request.app.mongodb["cars"].aggregate(query)

 return [el async for el in full_query]

Later on, we will add another endpoint that will perform some tasks in the background, but for now,
we have more than enough endpoints to start building our dashboard and our pagination functionality.

Building the frontend with SWR and Charts.js
Now, we will proceed to build our frontend with two goals in mind: we want to have a way of paginating
through our cars with the usual previous or next buttons and we want to find a way of displaying the
data from our MongoDB aggregations – whether by the average price of models by brand or something
else. In order to be able to start tinkering with the user interface, we will create a new React App
using our faithful friend: the create-react-app script and I will (again) install Tailwind CSS.
Since we have already seen this procedure a couple of times, I will not repeat it here. After installing
Tailwind, we are going to need React Router 6 as well, so go ahead and install it. Now, it is time to set
up the router and the three pages that will be displayed in our analytics application. Follow these steps:

1. Edit the index.js file in the /src directory:

import React from 'react';

import ReactDOM from 'react-dom/client';

import {BrowserRouter,Routes,Route,

} from "react-router-dom";

import './index.css';

import Layout from './components/Layout';

import Home from './components/Home';

import Dashboard from './components/Dashboard';

import Report from './components/Report';

After importing the Router components, we are also reporting four components that we
have yet to create – the Layout component will be used for the same purpose as in Chapter
4, Setting a React Workflow, while Home, Dashboard, and Report will be virtual pages in
our single page app, and they will all live in the /components folder.

Building a Data Visualization App with the FARM Stack254

2. Let’s finish the router setup in the same file:

const root = ReactDOM.createRoot(document.
getElementById('root'));

root.render(

 <React.StrictMode>

 <BrowserRouter>

 <Layout>

 <Routes>

 <Route path="/" element={<Home />} />

 <Route path="/dashboard"

 element={<Dashboard />} />

 <Route path="/report" element={<Report />}

 />

 </Routes>

 </Layout>

 </BrowserRouter>

 </React.StrictMode>

);

3. Now, it’s time for the Layout.jsx component: we will make a standard flex layout with
the header and footer at the top and the bottom of the page, respectively:

import Header from "./Header";

import Footer from "./Footer";

const Layout = ({ children }) => {

 return (

 <div className="flex flex-col h-screen">

 <Header />

 <div className="flex-1 flex flex-row

 justify-center items-start mx-auto container

 my-10">

 {children}

 </div>

 <Footer />

 </div>

);

Building the frontend with SWR and Charts.js 255

};

export default Layout;

4. Feel free to get creative with the footer, while the header will contain just a navigation menu:

import { NavLink } from "react-router-dom";

const Header = () => {

 return (

 <div className="fixed bg-white w-full">

 <div className="flex flex-row

 justify-center space-x-4 h-10 items-center

 text-red-800 font-bold text-lg">

 <NavLink to="/">Cars</NavLink>

 <NavLink to="/dashboard">Dashboard</NavLink>

 <NavLink to="/report">Report</NavLink>

 </div>

 </div>

);

};

export default Header;

The virtual pages, Dashboard, Report, and Home, can just be scaffolded with generic React
functional components for now. Make sure the navigation works as advertised and that the
content of the Layout component changes after clicking the links. I have added a couple of
classes just to see whether the pages work.

One other important step that we need to take at this point is to set up an .env.local environment
file, in which we will specify the URL of our API. Since now we are in development mode, this file
will simply point to our development FastAPI local server (at http://127.0.0.1:8000), but
once we deploy our React application, the API will be served from a server on the internet (in this
case, we will deploy to DigitalOcean’s Ubuntu Droplet, but it could be Heroku as well). In order to be
accessible from the process.env variable, the environment variable has to start with REACT_APP,
so in our case, the .env.local file will look as follows:

REACT_APP_API_URL=http://127.0.0.1:8000

Now, instead of hardcoding our API URL, we will just reference the REACT_APP_API_URL variable
and when the time for deployment comes, we will simply provide our production API to the deployment
service of choice (Netlify or Vercel, for example) and the React bundler will set things up accordingly.

Building a Data Visualization App with the FARM Stack256

React pagination and SWR

The first page that we’ll tackle is the Home page, and this should allow us to quickly navigate or
paginate through all the records on the page. In this application, we will not implement context, nor
local storage solutions, so we will not be able to preserve any kind of state on page refreshing, but that
is not the point here. We have seen that making requests to the API server and then implementing
the useEffect or useState dance on every page can quickly become a bit cumbersome. In this
application, we will use the concept (and the library) called SWR. The library bears the same name as
the concept, so do not get confused. We will use Vercel’s relatively lightweight library, which enables
us to handle data fetching from the server in a more pleasant, stable, and quicker way, while providing
data caching, prefetching (fetching data that has yet to be displayed in the app after a user interaction
that hasn’t yet occurred), and validation. Different implementations are available for React – one very
popular and feature-rich implementation is React Query, but we will use SWR (https://swr.
vercel.app/).

Before diving into the Home page that is supposed to display all our cars, let’s create two simple React
components that will be reusable across the app – first, a really bland Card.jsx component for
displaying the individual car:

const Card = ({ car }) => {

 const { make, brand, km, cm3, price, year } = car;

 return (

 <div className=" shadow-md rounded-md flex flex-col

 justify-center p-2 bg-green-100 items-center">

 <div className="font-bold">

 {brand} - {make} ({cm3}cm3)

 </div>

 <div>{km} Km / Year: {year}</div>

 <div>Price: {price} eur</div>

 </div>

);

};

export default Card;

Then, we need a reusable CarsDropdown component, a simple select element with the car brands
as possible values, and a custom onChange handler:

const CarsDropdown = ({ selectHandler, allCars }) => {

 const carBrands = ["Fiat","Opel","Renault","Peugeot",

 "VW","Ford","Honda","Toyota"];

 return (

https://swr.vercel.app/
https://swr.vercel.app/

Building the frontend with SWR and Charts.js 257

 <select

 onChange={selectHandler}

 value={elValue}

 className=

 "px-2 py-1 my-2 mx-2 rounded-lg form-select

 md:w-1/6"

 >

 {allCars && <option value="">All brands</option>}

 {carBrands.map((brand) => {

 return (

 <option value={brand} key={brand}>

 {brand}

 </option>

);

 })}

 </select>

);

};

CarsDropdown.defaultProps = {

 allCars: false,

 elValue: "",

};

export default CarsDropdown;

This is just a simple select component that we parametrized for our purposes: it is populated with
the selected car brands (ideally, this brands array would come from a distinct query from the
database) and it is passed a handler function through props. We have also used a defaultProp
– the allCars flag. This is just a way to indicate whether we want the allCars option included
or not – on the first pagination page we want to include all the brands, while in the charts that display
data for a particular brand, it wouldn’t make much sense.

We now have all the ingredients to build our simple pagination Home.jsx page. Let’s set up SWR
and see how it does its magic with the querying:

import { useState } from "react";

import useSWR from "swr";

import Card from "./Card";

import CarsDropdown from "./CarsDropdown";

const fetcher = (...args) => fetch(...args).then((res) => res.

Building a Data Visualization App with the FARM Stack258

json());

const Home = () => {

 const [pageIndex, setPageIndex] = useState(1);

 const [brand, setBrand] = useState("");

 const { data, error } = useSWR(

 `${process.env.REACT_APP_API_URL}/cars/
all?page=${pageIndex}&brand=${brand}`,

 fetcher

); if (error) return <div>failed to load</div>;

 if (!data) return <div>loading...</div>;

Setting up SWR is rather simple – we just need a pretty generic fetcher function that will use the
arguments provided to make the API call. This function can use Axios as well, but here, we use just
fetch and make a couple of then clauses in order to get the result in JSON. We then make use
of the useSWR hook, which is very simple to use – it provides a data object or an error object,
depending on the result of the query. You can play around with it and try stopping the FastAPI server
or making an intentional typo in the URL – the page will be cut short to a loading or an error message.

In our case, we follow the documentation and immediately short-circuit the functional component:
if there is an error, we return a div with the notification, and if there is no error, but no data either,
we display a loading message. The third option is that we got the data – and this data can be treated
pretty much the same way as with the useEffect and useState combination before. Every time
the URL changes to accommodate a selected car brand or a query page number, SWR will fetch the
new data. It gets even better – SWR will prefetch data if we play our cards right and it will provide
caching, noticeable even in our lightweight application. The SWR documentation suggests a neat
trick (https://swr.vercel.app/docs/pagination): we should basically request the
next paginated content just to make SWR make the API call, without displaying the content on the
current page. By doing this, we drastically improve our user experience. Let’s update the previous
code and make this call (to the pageIndex+1 page, the next page) – we’ll just dump the retrieved
data into an invisible div:

 const { nextData, nextError } = useSWR(

 `${process.env.REACT_APP_API_URL}/cars/all?page=${

 pageIndex + 1

 }&brand=${brand}`,

 fetcher

);

 const { data, error } = useSWR(

https://swr.vercel.app/docs/pagination

Building the frontend with SWR and Charts.js 259

 `${process.env.REACT_APP_API_URL}/cars/

 all?page=${pageIndex}&brand=${brand}`,

 fetcher

);

 if (error) return <div>`failed to load {process.env.REACT_

 APP_API_URL}`</div>;

 if (!data) return <div>loading...</div>;

Let’s now build the controls for our Home page – the brand selector and the Previous and Next page
buttons:

return (

 <div className="w-full p-8 my-10">

 <h1 className="font-bold text-lg text-center

 p-8 border border-gray-500">Explore Cars</h1>

<div className="hidden">

This will not be displayed!

 {JSON.stringify(nextData)} {JSON.stringify(nextError)}

</div>

 <div className="flex flex-row justify-between my-3">

 <CarsDropdown

 selectHandler={(event) => {

 setBrand(event.target.value);

 setPageIndex(1);

 }}

 allCars={true}

 elValue={brand}

 />

 <div className="">

 {pageIndex > 1 ? (

 <button

 className=" bg-red-800 text-white font-bold

 p-3 m-1 rounded-md w-40"

 onClick={() => setPageIndex(pageIndex - 1)}

 >Previous</button>

) : (

 <></>

Building a Data Visualization App with the FARM Stack260

)}

 </div>

In the preceding snippet, we are putting our custom select, CarsDropdown, to good use, passing
it a simple handler that sets the selected brand and restarts the pagination – setting the page to 1
every time the brand is changed. After the selector, we use simple logic to conditionally display the
Previous button – if the page index is not greater than 1, then there is no previous data. We use the
same logic for displaying the Next button, relying on the total number of pages provided by our API.

The last part is just displaying a bunch of cards and iterating over the data:

<div className="flex flex-row justify-center items-center">

 Brand:

 <span className=" font-bold text-lg mx-2

 text-gray-500">

 {brand ? brand : "All brands"}

 Page:

 <span className=" font-bold text-lg mx-2

 text-gray-500">

 {pageIndex} of {data.pages}

 </div>

 </div>

 <div className="grid grid-cols-4 lg:grid-cols-5

 gap-2">

 {data.results.map((car) => (

 <Card car={car} key={car._id} />

))}

 </div>

 </div>

);

};

export default Home;

As useful feedback for the user, we are also displaying the selected brand and the number of pages,
as well as the current page they are viewing.

You will notice that SWR does a lot of things under the hood – it takes care of the data and the error
automatically, performs caching, and validates the data on page focus.

Building the frontend with SWR and Charts.js 261

Building the dashboard with Chart.js

We have finished creating our FastAPI analytical endpoints that perform aggregations, and we managed
to return nice and simple arrays of data ready to be displayed in our dashboard. Now, we will use one
of the most popular charting solutions – Chart.js – in order to create our dashboard, a page filled with
charts that display our data and shed some light on it.

Data visualization with React

Over the course of the last decade, we have witnessed incredible development when it comes to data
visualization – Python itself provides numerous interesting solutions that often blend with some
JavaScript in order to produce interactivity (such as Bokeh and Altair), along with older staples
such as Matplotlib and Seaborn. JavaScript and React specifically are very well-suited for web-based
visualizations that look great and have a good speed, even on mobile devices, and are often integrated
into mobile applications.

Data visualization solutions can be generally categorized by how much they can accomplish, but also
by their level of customization. Some D3.js visualizations are simply impossible to reproduce with
any other tool and require a pretty high level of proficiency. Others, such as Chart.js – the charting
solution that we will be using for our application – are relatively easy to use and provide a sufficient level
of customization for the majority of cases. I must also mention the growing popularity of particular
data visualization frameworks, especially Plotly Dash and the up-and-coming Streamlit: these are two
Python-based frameworks that allow even novices to create production-level quality data applications,
and showcase datasets, exploratory analyses, and data processing algorithms, which truly democratizes
and opens up the field. The FARM stack, in my humble opinion, provides similar possibilities, although
not in a framework-based environment. The recent technique of combining D3.js and React, where
D3 is used to display data and React takes control of the DOM, has given us some amazing solutions,
and there is no reason why the backend shouldn’t be based on MongoDB and Python.

Let’s get back to our simple dashboard. The dashboard page is meant to host a couple of charts – but
once you get the hang of it, you are free to experiment and add others as well. The page itself will be a
mere container, as the charts will be independent from one another and will each sport a different state:

import BrandCount from "./BrandCount";

import ModelCount from "./ModelCount";

import BrandValue from "./BrandValue";

const Dashboard = () => {

 return (

 <div className=" w-full p-8 my-10">

 <h1 className="font-bold text-lg text-center

 p-8 border border-gray-500">

 DashBoard

Building a Data Visualization App with the FARM Stack262

 </h1>

 <div className="grid 2xl:grid-cols-2 gap-2">

 <BrandValue val={"price"} />

 <BrandValue val={"km"} />

 <BrandValue val={"cm3"} />

 <BrandValue val={"year"} />

 </div>

 </div>

);

};

export default Dashboard;

Again, the Tailwind styles applied are not here to make the app look pretty, but rather, to enable us
to differentiate between various components and not get in the way too much. Now, we will try and
build a BrandValue component, which will be used to display a chart based on the aggregation
data that it receives from our endpoint.

Just to be clear, we are building a Charts.js chart, a simple bar chart, with only one dataset (we
could potentially put more than one brand on display), and we have two values that determine the
data – the brand of the car (which will be provided by our custom dropdown brand selector) and the
numerical value that we will pass as props. We could have made just another dropdown menu for the
numeric values that we want to aggregate upon (km, cm3, price, and year) and just create one big
chart, but I want to showcase more visualizations side by side, and maybe users will want to see and
compare different charts at the same time.

Let’s stop the server and install React Charts 2 and Charts.js:

npm i react-chartjs-2 chart.js

At this point, you really should go over to the Chart.js documentation site and get acquainted with the
way that they deal with charts. As mentioned previously, Charts.js is definitely more of a pre-canned
visualization solution, in the sense that it allows you to pass numerous properties and options to the
chart object, but you are confined by the charts that are offered. For our case, and really for cases when
you do not need super customized solutions with brand-matching colors or a particularly weird chart
type, Chart.js is a great solution.

Open up a new React component in the components folder and call it BrandValue.jsx. We
will begin with the imports:

import { useState } from "react";

import useSWR from "swr";

Building the frontend with SWR and Charts.js 263

import {

 Chart as ChartJS,

 CategoryScale,

 LinearScale,

 BarElement,

 Title,

 Tooltip,

 Legend,

} from "chart.js";

import { Bar } from "react-chartjs-2";

import CarsDropdown from "./CarsDropdown";

We are importing useState and this will be used to keep track of the selected brand, since the
aggregation target is already passed via props. useSWR will be used to fetch data, as we did with our
pagination page, while the remaining imports are all from Chart.js – basically, every bit of functionality
that will be needed has to be imported. In the end, we import our CarsDropdown as well, as it will
be used for selecting the car brand. Let’s now register the various parts of a Chart.js chart:

ChartJS.register(CategoryScale, LinearScale,
BarElement, Title, Tooltip, Legend);

The next and arguably the most important step is passing the options object to our chart. As you
can see from the documentation, it is a simple object with some nested values, and it takes care of
the title and the axes. Now, Chart.js is very good at setting our axis values – but we have an edge
case: the production year. This is a good example of a variable that has a very limited range compared
to its total value – and in fact, if we leave it to Chart.js, it will draw us a list of rectangles with so little
variation of height that it will be virtually impossible to tell them apart (let’s say, comparing rectangles
of 2,010 mm and 2,005 mm).

For this reason, you may want to create a simple function that returns the options object before
passing it to the chart itself. In this case, I just went to the documentation site and saw that we can
actually pass a minimum value for the y-axes – everything is possible and relatively easily achievable
with Chart.js. Let’s see this options function:

export const options = (val) => {

 let optObj = {

 responsive: true,

 plugins: {

 legend: {position: "top",},

 title: {

Building a Data Visualization App with the FARM Stack264

 display: true,

 text: `Average ${val} of car models by brand`,

 },

 },

 };

 if (val === "year") {

 optObj["scales"] = {

 y: {

 min: 1980,

 },

 };

 }

 return optObj;

};

We used the val prop provided to the component in two places actually – for setting the title of
the chart and for checking whether the aggregation variable is equal to the year string. If it is, we
simply add a scales key with a value of 1980 for the y-axis – which just means that for the year
aggregation only, the y-axis will begin at 1980. Feel free to experiment and see what works best for
you. After defining our usual fetcher function for the SWR library, we are ready to begin crafting
the component itself:

const fetcher = (...args) => fetch(...args).then((res) => res.
json());

const BrandValue = ({ val }) => {

 const queryStr = `avg_${val}`;

 const [brand, setBrand] = useState("Fiat");

 const { data, error } = useSWR(

 `${process.env.REACT_APP_API_URL}/cars/
brand/${val}/${brand}`,,

 fetcher

);

 if (error) return <div>failed to load</div>;

 if (!data) return <div>loading...</div>;

Building the frontend with SWR and Charts.js 265

The preceding code just declares our functional component function and at the start, we create a
queryStr variable. Since the component prop that is passed will be, say, km, we need a way to
access the values in the API and they would be under the avg_km key in this case. These values will
be used when creating our data object to be passed to the Chart.js instance. We then proceed to
initialize the state variable brand and set up our SWR data-fetching mechanism, as we did with the
pagination page. Finally, we get to create the chartData object – the data that Chart.js will use
to actually build the chart:

const chartData = {

 labels: data.map((item) => {

 return item["_id"]["model"];

 }),

 datasets: [

 {

 label: brand,

 data: data.map((item)=>Math.round(item[queryStr])),

 hoverBackgroundColor: ["#aaff99"],

 },

],

 };

Again, I strongly suggest that you visit the Chart.js documentation (it is excellent, by the way) in order
to understand how the library expects data to be passed. Our case is a pretty simple one – we need
the labels and these are just the car model names to be spread across the categorical x-axis, so we can
just map over the data (that SWR was kind enough to provide!) and extract the ID model. Again, we
could have lost the ID part while we were in Python. Chart.js by default expects more datasets than
just one, so the variable name is datasets (plural), and this is useful when comparing datasets with
the same labels. We, however, need just one dataset and that is the rounded value of our aggregation
– km, cm3, year, or price. This is where our queryStr variable generated from the component
props comes into play – it allows us to access the data from the API. As a nice touch, I added a hover
background color for the bars – it is just a HEX value. With all this in place, writing the component
becomes simple:

 return (

 <div className="w-full shadow-md my-5">

 <h1 className=" text-red-700 font-bold text-center">

 {val.toUpperCase()} by model for a given

 brand - {brand}

 </h1>

Building a Data Visualization App with the FARM Stack266

 <div className=" w-full text-center">

 <CarsDropdown

 selectHandler={(event) =>

 setBrand(event.target.value)}

 elValue={brand}

 />

 </div>

 <div className="p-5 min-w-full">

 <Bar options={options(val)} data={chartData} />

 </div>

 </div>

);

};

export default BrandValue;

We display the value that we are aggregating, the CarsDropdown component with the handler, and
the value (so the component doesn’t re-render to the default state!), and we insert the options and the
data objects into the BarChart component. Chart.js does the bulk of the work in the preparation
stage. The page should display four identical bar charts for each numerical data value. The charts are
independent and can be set to different brands.

Before leaving the dashboard, let’s create a pie chart and display the number of cars for each brand.
The management loves pie charts! The procedure will be very similar, except we will not accept any
props. Pie charts, however, often present another challenge – the color contrast of adjacent segments
should be significant enough to clearly distinguish the data. For this reason, we will borrow some
colors from D3.js – their excellent chromatic scale package essentially maps an array of numbers
or a segment of values between 0 and 1 into appropriate colors. We typically pass the index of the
data or a normalized or scaled variable value to the scale and use the resulting color code to paint.
Install the scale with the following:

npm i d3-scale-chromatic

Now, we can create a BrandCount.jsx component in the /components folder:

import useSWR from "swr";

import { Chart as ChartJS, ArcElement, Tooltip, Legend } from
"chart.js";

import { Pie } from "react-chartjs-2";

import { schemePastel1 } from "d3-scale-chromatic";

const colors = schemePastel1;

Building the frontend with SWR and Charts.js 267

ChartJS.register(ArcElement, Tooltip, Legend);

const fetcher = (...args) => fetch(...args).then((res) => res.
json());

After importing useSWR, we take what we need from Chart.js – the chart itself, ArcElement,
which is a core element of a pie chart, and the usual Tooltip and Legend. The pie comes from
the react-chartjs-2 library. We then instantiate a color scale – I opted for some pastel colors
but feel free to explore the whole set. After registering the components of the chart, we define our
fetcher for SWR. Let’s make the pie:

const BrandCount = () => {

 const { data, error } = useSWR(

 `${process.env.REACT_APP_API_URL}/cars/brand/count`,

 fetcher

);

 if (error) return <div>failed to load</div>;

 if (!data) return <div>loading...</div>;

 const chartData = {

 labels: data.map((item) => {

 return item["_id"];

 }),

 datasets: [

 {

 data: data.map((item) => item.count),

 backgroundColor: data.map((item, index) =>

 colors[index]),

 borderWidth: 3,

 },

],

 };

The code is pretty intuitive after having dealt with the bar charts – the only thing that is different is the
fact that we are using our D3 color scale to map through the indices of the data and pick a color for each
data point. Here, I just bumped the border between the slices, but you are free to experiment and bake
a different flavor pie. In the GitHub repo with the code from this book, you will find an additional, very
similar pie chart that lists the models within a given brand and uses our CarsDropdown selector.

Building a Data Visualization App with the FARM Stack268

Background Tasks

FastAPI provides a very nifty feature called Background Tasks – it is a simple mechanism that allows us to
pass one or more operations (functions, really) that should run after a request, but shouldn’t be awaited
by the client making the requests: they can happen in the background. It is another feature provided by
Starlette, and the recommendation is to use them for lighter tasks, such as sending email notifications.
It is not a drop-in replacement for serious task or message brokers such as RabbitMQ and Celery.

In order to finish our analytics application, we are going to use FastAPI Background Tasks to achieve
the following functionality. The user makes a POST request sending an email address and a number
of cars to be included in the report. This situation is really just a simulation of a real analytics pipeline
– the email could be a list of all the salespeople or managers, or perhaps a list of registered customers
that want to receive information about new cars that are available or some flash sales. The cars selected
for the report will be drawn as a random sample, while in a real-world scenario, they could be selected
according to some more or less complex criteria – vehicles marked for a discount, inserted only in the
past couple of days, and so on. After the user submits the data (in our case – just an email address and
a number of companies!), we will take advantage of Python’s ecosystem to perform some operations.
We could, for instance, create some charts and send the results to the selected email address. This will
enable us to see how Background Tasks handle these potentially long-running and processor-intensive
operations while sending a quick response to the user.

We will break this operation down into simple steps. First, let’s open our React project (the frontend)
and create the Report.jsx page:

import { useState, useEffect } from "react";

const Report = () => {

 const [email, setEmail] = useState("");

 const [carsNum, setCarsNum] = useState(10);

 const [message, setMessage] = useState("");

 const [loading, setLoading] = useState(false);

 const handleForm = async (e) => {

 e.preventDefault();

 setLoading(true);

 const res =

 await fetch("http://127.0.0.1:8000/cars/email", {

 method: "POST",

 headers: { "Content-Type": "application/json" },

 body: JSON.stringify({ email, cars_num: carsNum }),

 });

 if (res.ok) {

Building the frontend with SWR and Charts.js 269

 setLoading(false);

 setMessage(`Report with ${carsNum} cars sent to

 ${email}!`);

 }

 };

This page is going to be very rudimentary, without any validation in order to save some space. I just
added four state variables – email and carsNum are the parameters that we are sending to the
API, while the loading and message variables are used for managing the user interface. Upon
submission, we set the loading flag to true and after receiving an ok response (and, beware, we
will always receive it, because this response has no way of knowing how Background Tasks will end),
it displays a gentle message informing the user that the report is about to be created and sent to the
desired email address. We aren’t even validating the email address – I repeat, this is just a proof of the
concept. Be sure to only send emails to yourself and not to spam random people, as your SendGrid
account will quickly (and rightfully) be terminated if so! Let’s finish the component and page:

return (

 <div className="w-full p-8 my-10">

 <h1 className="font-bold text-lg text-center p-8

 border border-gray-500 w-full ">Generate Report</h1>

 <div className="flex flex-col justify-center

 items-center h-full py-5">{loading && (

 <div className="border border-green-600 w-2/3 p-10

 text-center font-thin my-4 text-lg animate-pulse">

 Generating and sending report in the background...

 </div>

)}

{message && (

 <div className="border border-green-600

 w-2/3 p-10 text-center font-thin my-4 text-lg

 animate-pulse">

 {message}

 </div>

)}

Building a Data Visualization App with the FARM Stack270

Finally, we can add the form for sending the email:

 {!loading && !message && (

 <form className="flex flex-col justify-center"

 onSubmit={handleForm}>

 <label htmlFor="email">Email</label>

 <input

 type="text"

 id="email"

 name="email"

 value={email}

 onChange={(e) => setEmail(e.target.value)}

 className="px-2 py-1 my-2 rounded-full"

 />

 <label htmlFor="carsNum">Number of cars</label>

 <input

 type="number"

 id="carsNum"

 name="carsNum"

 max={50}

 min={5}

 value={carsNum}

 onChange={(e) => setCarsNum(e.target.value)}

 className="p-2 py-1 my-2 rounded-full"

 />

 <button

 type="submit"

 className="block rounded-md bg-green-600

 text-white px-3 py-1 m-4

 text-lg hover:bg-green-500

 transition-colors duration-300"

 >Send report</button>

 </form>

)}

 </div>

 </div>

);

Building the frontend with SWR and Charts.js 271

};

export default Report;

The component is really simple – a form with two fields and a handleSubmit function that, when
called, hits an API endpoint.

Let’s move on to Python now. First, we need to create the endpoint that will accept the email and the
number of cars fields – our substitute for a potentially complex and smart query – and trigger the
background task. For simplicity’s sake, I will add the route to the existing /cars router, but it should
probably be wiser to create a brand-new router and group various similar analytic routes under it.
Let’s edit the /routers/cars.py router:

@router.post("/email", response_description="Send report")

async def send_mail(

 background_tasks: BackgroundTasks,

 cars_num: int = Body(...),

 email: str = Body(...),

):

 background_tasks.add_task(report_pipeline,

 email, cars_num)

 return {"Received": {"email": email, "cars_num":

 cars_num}}

Do not forget to import Background Tasks from FastAPI at the top of the file:

from fastapi import APIRouter, Request, Body, HTTPException,
BackgroundTasks

The Background Tasks syntax is straightforward – we just have to declare the background_tasks
variable as a BackgroundTasks type (you can name it whatever you like, however) and then use
the add_task method to add a function to be executed, followed by the arguments. This way, we can
add multiple, logically ordered tasks. In our case, we are calling a report_pipeline function– yet
to be defined – with the email and cars_num variables that we are promptly extracting from the
body of our POST request. We finish the endpoint with a generic message that simply acknowledges
that the server received the POST variables, with a (default) 200 OK status.

Building a Data Visualization App with the FARM Stack272

Go ahead and create a new folder called /utils in the root of the project (the /backend folder) and
inside of it, create an empty __init__.py file, transforming the directory into a Python module.
We will approach this top-down, although it would be wiser to start with the low-level functions and
start testing, testing, and then do some more testing! Inside /utils, let’s create our first Python file,
report.py, in the /utils directory:

from time import sleep

def report_pipeline(email, cars_number):

 sleep(5)

 print(email, cars_number)

Go ahead and try this route out – either with Insomnia or HTTPie or through our React App, if you
left it running. You should see an immediate response, while, if you look closely at the Python terminal
running FastAPI, you will notice a delay of 5 seconds, after which the email and the number of cars
will be printed: this is the whole point of Background Tasks – the HTTP response is sent immediately,
while the server (although not the part involved in the request/response cycle) is left doing the hard,
or simply time-consuming, work.

We will carry out an example – a simple one, but also something that you could easily extend and
adapt to some pretty complex analysis.

First, let’s install pandas – the basis of any Python analysis and data wrangling:

pip install pandas

Let’s finally make a new file in the /utils directory and name it report_query.py. This file
will contain the functionality needed to connect to the database (synchronously, because there is no
need to make it asynchronous), perform some simple data wrangling (you can think of this as part
of a simple ETL pipeline), and return some data for the report:

from pymongo import MongoClient

from decouple import config

import pandas as pd

DB_URL = config("DB_URL", cast=str)

DB_NAME = config("DB_NAME", cast=str)

client = MongoClient(DB_URL)

db = client[DB_NAME]

cars = db["cars"]

Building the frontend with SWR and Charts.js 273

After importing the synchronous MongoDB driver, PyMongo, and setting it up using the environment
variables, we can define our simple data-processing function:

def make_query(cars_number: int):

 query = [

 {"$match": {"year": {"$gt": 2010}}},

 {

 "$project": {

 "_id": 0,

 }

 },

 {"$sample": {"size": cars_number}},

 {"$sort": {"brand": 1, "make": 1, "year": 1}},

]

 full_query = cars.aggregate(query)

 results = [el for el in full_query]

 return pd.DataFrame(results).to_html(index=False)

The function simply makes a sample query – it picks cars_num at random, with the only condition
that the year has to be greater than 2010, but you could make it as complex as needed of course. After
making the aggregation, we are left with a list of dictionaries, something pandas has no problem turning
into a DataFrame. We then use the simplest possible functionality and transform the DataFrame with
the aggregation data into an HTML table, while removing the zero-based index.

Important Note
It is worth remembering that at this stage, we could potentially do anything with this data –
transform it, interpolate it, or create static PNG or SVG charts and save them into files to be
attached or embedded into PDF or DOCX documents.

Feel free to test the previous function by adding a print statement at the bottom of the file and
actually invoking it from /utilities:

print(make_query(5))

It should display a valid HTML table with five random cars inside it.

Let’s move on – so, we want to incorporate the email-sending functionality and for that, we need an
emailing solution. While there are numerous options on the market, the choice really boils down
to a couple of big companies that provide similar solutions. Here, I opted for SendGrid, one of the
leaders in email management and a part of the Twilio company. They provide a free tier (the number

Building a Data Visualization App with the FARM Stack274

of emails that we can send and test the service before committing is currently fixed at 100 emails per
day) and a very friendly API for sending emails. Head over to the sign-up page https://signup.
sendgrid.com/ and fill in the required data.

SendGrid is a serious service and emails are tricky – you need to make sure that you are not spamming
people, and that your emails are not marked as spam, deleted, or never opened. You will eventually need
to validate your domain (the domain that will be used for sending real emails, in production). There
is really a lot of work to be done to set up a production-grade email system, especially when you are
targeting outside users that subscribe or create an account. This topic is a bit beyond the scope of this
book and this chapter, so I will just stick to the very basics – in order to be able to send an email with
SendGrid, you will need to verify your (free) account and provide a phone number for SMS validation.
After that, you should make your first API key – once logged in, head over to the page, https://app.
sendgrid.com/settings/api_keys, and create a Full Access API key. By now, you know the
drill – copy the key in a secret txt file, and after that, update the .env file in the /backend directory:

SENDGRID_ID=SG.<very long string, like really looooong>

We also need to install the sendgrid Python library using the following:

pip install sendgrid

The relevant documentation is available on GitHub: https://github.com/sendgrid/
sendgrid-python.

Now, let’s create a file that will assemble and send the email – let’s call it send_email.py – in the
/utils folder:

from decouple import config

import sendgrid

from sendgrid.helpers.mail import *

SENDGRID_ID = config("SENDGRID_ID", cast=str)

We are importing the decouple library in order to access SENDGRID_ID, our API key, and after
that, all the various sendgrid helpers. Let’s proceed and build our email:

def send_report(email, subject, HTMLcontent):

 sg = sendgrid.SendGridAPIClient(api_key=SENDGRID_ID)

 from_email = Email("your@email.rs")

 to_email = To(email)

 subject = "FARM Cars daily report"

 content = Content(

 "text/plain", "this is dynamic text, potentially

 coming from our database"

https://signup.sendgrid.com/
https://signup.sendgrid.com/
https://app.sendgrid.com/settings/api_keys
https://app.sendgrid.com/settings/api_keys
https://github.com/sendgrid/sendgrid-python
https://github.com/sendgrid/sendgrid-python

Building the frontend with SWR and Charts.js 275

)

 mail = Mail(from_email, to_email, subject, content,

 html_content=HTMLcontent)

Most of the helpers are self-explanatory: first, we instantiate the client (sg) and then, we gradually
add settings – from_email, to_email, subject (which we’re going to customize later), the text
content (which is mandatory, as is html_content) – that are going to generate our table converted
from the pandas DataFrame.

Important Note
At this point, it is important to emphasize the fact that we are free here to craft any type of
HTML within the reasonable email-imposed limits – we could (and should!) use an email
design tool (there are many and they are usually WYSIWYG) and for the HTML, we can use
the powerful Jinja2 templating language, which will be able to convert even the most complex
data structures into HTML with ease. This is all just the tip of the iceberg – with the power of
pandas and the Python data-wrangling ecosystem, we can create charts with Plotly, Matplotlib,
Bokeh, or Altair, save them as PNGs or SVGs, and embed them in documents, whether PDFs
or DOCXs (with the excellent doxc-tpl module), or in plain HTML! Charts could also
potentially be saved on Cloudinary – the possibilities are endless.

Let’s finish our email-sending file:

try:

 response =

 sg.client.mail.send.post(request_body=mail.get())

except Exception as e:

 print(e)

 print("Could not send email")

We now have both ingredients for our simple pipeline – we have a function that generates reports
(or tables, rather) from the database and we have an email-sending function. All that’s left to do is to
connect the two. Edit the utils/report.py file:

from .report_query import make_query

from .send_report import send_report

def report_pipeline(email, cars_number):

 try:

 query_data = make_query(cars_number)

 except Exception as e:

 print(e)

Building a Data Visualization App with the FARM Stack276

 print("Couldn't make the query")

 try:

 send_report(email=email, subject="FARM Cars

 Report", HTMLcontent=query_data)

 except Exception as e:

 print(e)

I have wrapped the code into some try and except blocks, as errors are bound to happen. In a
production system, we would want to log these errors in a verbose way since the FastAPI server will
not take care of it and nobody likes diving through log files on Unix servers.

You should be able to test the React page now – so fire up the React server. If you enter your email
and select a number, you should receive an ugly-looking email with a single HTML table inside. The
functionality, however, can be easily extended at various points – we could embed machine-learning
algorithms, cool static or dynamic visualizations, or create PDFs, Word reports, and Excel files with a
predefined structure. Finally, with a little help from a package called FastAPI-utils, we can simulate a
cron job and perform certain actions periodically. We are not trying to replace a full-fledged solution
such as Streamlit or Plotly Dash – both excellent Python-based data analytics web solutions – but you
can already see that the FARM stack allows you to achieve most of this functionality and flexibility.
Coupled with a combination of D3.js and React, the types and the granularity of the dashboards,
visualizations, and analyses that you can generate are practically unlimited.

Finally, as a bonus, and just to show how easily we can make our application not only buzzword-
compliant but also more useful, we will implement a very simple machine-learning algorithm. Let’s
suppose that the management would love to have a basic prediction, a baseline, for the price of a car
that has just been listed. We could train a model – a simple one or an incredibly complex stacked
combination of different models – and embed it in our FastAPI server through a simple /predict
endpoint. This part of the chapter is really optional and if you aren’t into machine learning models,
feel free to skip this section.

The endpoint is really simple – it just accepts the brand, make, year, cm3, and km values for a car
and, based on this data, tries to predict the price of said car. The admin or the salesperson can then,
based on this predicted price, act accordingly – choose it as a minimum sale price or as a basis to
compare to the price that the owner gave, for example. First, we need to install two Python libraries
in our FastAPI virtual environment:

pip install pandas joblib

Let’s build the endpoint now – in the cars router, add the following endpoint:

@router.post("/predict", response_description="Predict price")

async def predict(

 brand: str = Body(...),

Building the frontend with SWR and Charts.js 277

 make: str = Body(...),

 year: int = Body(...),

 cm3: int = Body(...),

 km: int = Body(...),

):

 loaded_model =

 joblib.load("./random_forest_pipe.joblib")

 input_data = {

 "brand": brand,

 "make": make,

 "year": year,

 "cm3": cm3,

 "km": km,

 }

 from_db_df = pd.DataFrame(input_data, index=[0])

 prediction = float(loaded_model.predict(from_db_df)[0])

 return {"prediction": prediction}

The preceding code takes in the car data from the request body and converts it into a pandas DataFrame
with just one row. After that, it is passed to a loaded joblib model, which is previously trained and
saved in scikit-learn using the Joblib library for saving (or dumping) models.

The simple Python code used for generating this model, based on the data from our database, is
contained in a Jupyter Notebook on the internet and should you be so inclined, you are free to explore
it and modify it accordingly. The dataset that I used in this book is clean and overly simplified –
features are eliminated, the number of brands is very restricted, and outliers have been removed, so
it will not be difficult to achieve pretty high metric scores. Real-life data is messy, dirty, and full of
interdependencies, so models should have increased complexities. This is just an example of how easy
it would be to connect a machine-learning pipeline with our pluggable FastAPI server.

Now, it is time to push our code to GitHub, since this is where we are going to feed it to DigitalOcean
and Netlify.

Building a Data Visualization App with the FARM Stack278

Summary
This was a pretty long chapter, but I hope that it wasn’t boring. After having covered more conventional
web apps in the previous chapters, we were able to dig in a little deeper here and see what this particular
stack had to offer. We created some API endpoints based on MongoDB aggregations and we were
able to turn them into visualizations with Chart.js, but you should feel comfortable enough to plug in
your visualization solution of choice. We have seen how to leverage SWR- and React-specific fetching
strategies in order to make our sites snappy and performant. We have also explored the Background
Tasks feature that FastAPI provides and how it can help us perform some time-consuming tasks –
we used it to implement a simple email-sending system, while introducing SendGrid, a powerful
enterprise-level emailing solution.

In the next chapter, we are going to deploy our analytics application – we will serve FastAPI from a
robust Ubuntu server featuring Nginx and Gunicorn, while the frontend will be hosted on Netlify,
the most popular static-hosting continuous integration solution. While we’re at it, we will implement
a simple cache with Redis, making our FastAPI application potentially even faster!

10
Caching with Redis and
Deployment on Ubuntu

(DigitalOcean) and Netlify

In this chapter, we are going to explore yet another deployment setup – a robust Uvicorn/Gunicorn/Nginx
solution that has been tried and tested with Django and other WSGIs but also ASGI web applications.
This should give you more than enough choices when starting your next FARM stack project. We will
also add a simple caching solution with Redis, relieving MongoDB from some requests that could (and
should!) be cached and served directly. Finally, we will deploy our React-based frontend on Netlify,
another very popular deployment option, whose simplicity matches its flexibility.

In this chapter, we will cover the following topics:

• Creating an account on DigitalOcean (optional)

• Preparing our Ubuntu server with Nginx

• Deployment of a FastAPI instance through Uvicorn, Gunicorn, and Nginx

• Caching with Redis

• Creating a free account on Netlify

• Deployment of the React Frontend on Netlify

By the end of this chapter, you should feel confident when it comes to deploying FARM stack-based
applications on a variety of serving platforms, including a bare-bones Ubuntu (or any Linux) server.
You will be able to recognize where and how to add caching and implement it effortlessly with Redis.
Finally, with the knowledge of possible deployment solutions, you will be able to make solid decisions
when the time comes to deploy your application.

Caching with Redis and Deployment on Ubuntu (DigitalOcean) and Netlify280

Deploying FastAPI on DigitalOcean (or really any Linux
server!)
In this section, we are going to take our simple analytics application and deploy it on a Ubuntu
server on DigitalOcean (www.digitalocean.com) as an Asynchronous Server Gateway
Interface (ASGI) application. We are going to end up with a pretty robust and customizable setup
that includes our development web server – Uvicorn – but also Gunicorn (https://gunicorn.
org), an excellent and robust web server that plays very nicely with Nginx, and a virtual machine
running Ubuntu – a DigitalOcean droplet. Though in this example we are going to use DigitalOcean,
the procedure should apply to any Debian or Ubuntu-based setup; you can try it out on your own
machine running Ubuntu. The following instructions rely heavily on the excellent tutorials on setting
up an Ubuntu server on DigitalOcean by Brian Boucheron (https://www.digitalocean.
com/community/tutorials/initial-server-setup-with-ubuntu-20-04)
and on deploying an Async Django application by Mason Egger and Erin Glass (https://www.
digitalocean.com/community/tutorials/how-to-set-up-an-asgi-django-
app-with-postgres-nginx-and-uvicorn-on-ubuntu-20-04). You should read them
as they are very useful and well written!

Important Note
In this section, we will make heavy use of SSH – the Secure Shell Protocol. SSH is a cryptographic
protocol developed for accessing secure network services over insecure networks. If that doesn’t
make much sense, do not worry – there are plenty of great resources on basic SSH operations
on the internet. If you are willing to dive a bit deeper into DevOps, you can read the following
book: https://www.amazon.com/Mastering-Ubuntu-Server-configuring-
troubleshooting/dp/1800564643. Mastering Ubuntu Server is an excellent guide on
the subject. In the following pages, we will just log into a DigitalOcean droplet, which is nothing
more than a remote Ubuntu computer that we will be able to control. While I will show the
procedure for deploying a fully functional FastAPI instance on a DigitalOcean droplet, the best
way to try out this procedure would be to practice on your Ubuntu-based server. If you have a
spare box (even an older one), install Ubuntu and try connecting to it from your main computer.

The deployment procedure will be broken into easy steps.

DigitalOcean is one of the leaders in providing cloud computing and Infrastructure as a Service
(IaaS). Users can benefit from different types of virtual machines that can be modeled according to
our needs. In our case, we just want a solution for hosting our FastAPI server, similar to how we did
with Heroku in the previous chapters.

While DigitalOcean doesn’t provide a completely free tier, it is reasonably cheap to get started (around
4 USD per month). It has a flexible and scalable system where you can easily scale up or down
according to your needs and it offers complete control of the virtual machines – droplets, a fact that
brings us a whole new level of flexibility, a word that we often used in this book. Another advantage

http://www.digitalocean.com
https://gunicorn.org
https://gunicorn.org
https://www.digitalocean.com/community/tutorials/initial-server-setup-with-ubuntu-20-04
https://www.digitalocean.com/community/tutorials/initial-server-setup-with-ubuntu-20-04
https://www.digitalocean.com/community/tutorials/how-to-set-up-an-asgi-django-app-with-postgres-nginx-and-uvicorn-on-ubuntu-20-04
https://www.digitalocean.com/community/tutorials/how-to-set-up-an-asgi-django-app-with-postgres-nginx-and-uvicorn-on-ubuntu-20-04
https://www.digitalocean.com/community/tutorials/how-to-set-up-an-asgi-django-app-with-postgres-nginx-and-uvicorn-on-ubuntu-20-04
https://www.amazon.com/Mastering-Ubuntu-Server-configuring-troubleshooting/dp/1800564643
https://www.amazon.com/Mastering-Ubuntu-Server-configuring-troubleshooting/dp/1800564643

Deploying FastAPI on DigitalOcean (or really any Linux server!) 281

of DigitalOcean is its excellent community and an endless list of well-written articles on any service
or setup you may want to achieve, so it represents a good place to start if you are entering the world of
deployment, database setup, and so on. Just to be clear, DigitalOcean, as well as its competitors (Linode,
for instance) is perfectly able to host our complete full-stack setup – we could install MongoDB on the
server as well, add Node.js and Next or a React frontend, and orchestrate everything through Nginx,
a powerful and fast server. In this example, however, we only want to serve our FastAPI instance and
showcase a different type of deployment. Follow these steps:

1. Create an account on DigitalOcean! Head over to the DigitalOcean signup page at https://
cloud.digitalocean.com/registrations/new and fill in your data. You can sign
in with GitHub or Google if you wish, and you can use a referral code if you have one so that
you can try out the service for a determined time. Once you submit your data (and once you
have some credit to spend – be it from a referral program or after you connect your credit
card), you will be able to create your first droplet.

2. Create a droplet. I have used a Ubuntu 22.04 x64 Ubuntu distribution, the plan is Basic (the
cheapest), and the CPU options are $4/month with 512 MB/1 CPU (you will have to hit the
left arrow to find this plan!). Since I am in Europe, I selected the Frankfurt data center region.
Finally, to simplify things, I opted for password authentication, so I entered a root password
(that I am not going to disclose here!). I gave the hostname a name – farmstack. Although
we will be using the IP address to access this brand-new machine through SSH, it is useful to
have a user-friendly machine name.

Give DigitalOcean some time to prepare your droplet. After about 30 seconds, you will be able
to click on the lefthand menu under Droplets and you will be taken to a page that displays
information about your droplet. You now have a Ubuntu-based server under your control!

3. To verify that you are indeed able to log in as root on your brand-new machine, click on the IP
address of the droplet to copy it, open Cmder (or whatever shell you have been using this whole
time) on Windows or a bash/shell if you are on Linux or macOS, and try to access the droplet:

ssh root@<your_IP_address_that_you_just_copied>

4. Cmder will kindly inform you that the authenticity of the host cannot be established, which is
normal at this stage, and ask you if you want to continue connecting. Type yes; you will be
greeted with a shell that should read as follows:

root@farmstack:~#

5. It is good practice to create a new user account that will have all the necessary privileges so that
we don’t use the root account for our web hosting. Let’s create an account called farmuser:

adduser farmuser

https://cloud.digitalocean.com/registrations/new
https://cloud.digitalocean.com/registrations/new

Caching with Redis and Deployment on Ubuntu (DigitalOcean) and Netlify282

6. You will be asked to provide a password (twice), a name, and some other information, such
as a room number (!). It is important to remember the password! This newly created user will
need to be able to perform various administrative tasks, so we should grant them adequate
privileges. In the same SSH session, type the following:

usermod -aG sudo farmuser

After this, when we log in as farmuser, we will be able to just type sudo before performing
actions that require superuser powers.

We will make use of the UFW firewall to make sure that only certain types of connections to
our server are permitted. There are different options when it comes to DigitalOcean’s firewalls,
but this should be more than enough and easy to set up on different machines. Things may get
tricky, though – we need to make sure that when we leave our SSH root shell, we will be able
to get back in with our farmuser account!

7. To be sure that OpenSSH is allowed to access the machine, type the following:

ufw allow OpenSSH

8. You should see a message saying rules updated. Now, let’s enable ufw and check its status:

ufw enable

ufw status

The preceding commands should warn you that they may disrupt existing SSH connections;
confirm the first one anyway. The second should just inform you that the service is active.

9. Great. Now, Keep the SSH session alive and open a new terminal so that we can test our
connection with our regular yet highly privileged farmuser:

ssh farmuser@<your_IP_address_that_you_just_copied>

You should be greeted with a prompt; that is, farmuser@farmstack:~$. That’s great –
now, we can proceed with this (regular) user and use sudo when we need to do tricky stuff!

It is time to update our Ubuntu packages and add some more. Logged in as farmuser (or
whatever your regular, non-root username was), issue the following command:

sudo apt update

sudo apt install python3-venv nginx curl

sudo will prompt you for a password – your regular farmuser password – so kindly provide
it. Apart from Python 3, we are installing Nginx, our powerful web server and reverse proxy
solution, and curl (to test our API service locally).

Deploying FastAPI on DigitalOcean (or really any Linux server!) 283

Now, we are entering the second, project-related phase of our deployment. It is time to create a virtual
environment, just like we did numerous times during the development phase. This is a bare-bones
server, so we have to do everything manually. There is no helpful guiding hand like there was with
Heroku or Vercel. Follow these steps:

1. Let’s create a directory called apiserver in our home folder and cd into it (you can always
see where you are currently located with PWD!):

mkdir ~/apiserver

cd ~/apiserver

2. Now, let’s create a Python 3 environment:

python3 -m venv venv

3. After the setup has finished, go ahead and activate this environment with the following command:

source venv/bin/activate

You should see venv prepending the command prompt.

4. It is time to grab the address of the GitHub repository that you created for the backend and
change the directory to our /apiserver. Now, clone the GitHub repo inside to get all the code:

git clone <your repo address>

This will create a folder with the same name as the repository – in my case, it is a bit cumbersome:
FARM-chapter9-backend. Cloning the code from the repo will not copy the .env file
with the necessary keys for MongoDB and Sendgrid (and Cloudinary in the previous app).

5. Although we could set the environment variables manually through the shell, we are just going
to blatantly copy them using the secure copy scp command. Make sure you’re in your local
computer’s /backend folder and take note of the remote folder. Then, issue the following
command:

scp .env farmuser@207.154.254.114:~/apiserver/FARM-
chapter9-backend

6. Now try out the ls command to make sure that the folder with the code is indeed there, but
keep in mind that the .env file will not be shown! You will have to use something such as
nano .env to verify that the file is indeed there and that it contains the necessary information.
If you don’t want to mess with scp, you can just create and type in the .env file using nano
– the powerful command-line text editor provided by Linux systems.

7. Once the code is in the Ubuntu droplet, cd into the directory and install all the dependencies
with the following command:

pip install -r requirements.txt

Caching with Redis and Deployment on Ubuntu (DigitalOcean) and Netlify284

Important Note
After committing the code for the backend, you should update the requirements.txt
file by typing pip freeze > requirements.txt, while being within the activated
virtual environment on your local machine. This file should then be committed to GitHub – it
will be our magic ingredient for recreating the same virtual environment on other machines,
including our droplet!

8. Once the dependencies have been installed, we can test our application with the standard
Uvicorn command:

uvicorn main:app –reload

The prompt should inform you that Uvicorn is running on http://127.0.0.1:8000
but that we cannot access it yet from the outside.

9. Stop the server with Ctrl + C. To be able to test that the API is working, we have to disable our
UFW firewall. To do that, you have to sudo your way through it:

sudo ufw disable

Notice
This is a dangerous practice – a bit like leaving your front door open.

Now, if you try to rerun the Uvicorn server, you should be able to access your API with a REST client
or a browser at the IP address of your droplet, on port 8000! So far, we are only trying out what we
have been doing throughout this book on DigitalOcean. Now, it is time to introduce Gunicorn.

Important Note
Gunicorn is a mature and battle-tested WSGI Python server for UNIX. It is often used in
conjunction with Uvicorn since it is highly configurable and able to handle Uvicorn workers
efficiently. The Uvicorn documentation itself recommends a setup that includes Gunicorn and
Nginx and that is exactly what we are going to do! Gunicorn is an interesting and powerful project
in its own right and its documentation is is a useful read (https://gunicorn.org/).

Let’s build our deployment now. Follow these steps:

1. Install gunicorn with a simple call to pip:

pip install gunicorn

https://gunicorn.org/

Deploying FastAPI on DigitalOcean (or really any Linux server!) 285

2. After installing gunicorn, we can start our API server with the following command (while
staying in the source code directory!):

gunicorn --bind 0.0.0.0:8000 main:app -w 4 -k uvicorn.
workers.UvicornWorker

The preceding command starts a gunicorn server with four uvicorn workers. Gunicorn provides
also load balancing functionality for our Uvicorn servers – an async request that might be taking
a bit too long won’t hog up the system. Now, we can test our app on port 8000.

Now, we are going to use Linux’s powerful systemd service and socket files to make the server
start and stop programmatically.

Important Note
systemd is a process and system manager for Linux systems. If you wish to get to know its
capabilities and functionalities, I can recommend (another) very useful article from the
DigitalOcean knowledge database: https://www.digitalocean.com/community/
tutorials/systemd-essentials-working-with-services-units-and-
the-journal. Again, in these pages, we will only explain the commands that we will be
using – starting, stopping, and enabling and disabling services, servers, and so on.

3. We are going to have to use a bit of nano, the command-line text editor of choice for the
majority of Linux distributions. Stop the gunicorn server with Crtl + C and deactivate the
virtual environment with a simple deactivate. The prepended venv should be gone.

4. Now, let’s create a gunicorn socket. Sockets are simply communication points on the same or
different computers that enable systems to exchange data. When we create a Gunicorn socket,
it is just a way of telling the system that the created socket can be used to access data that the
server will provide:

sudo nano /etc/systemd/system/gunicorn.socket

The file’s content should be as follows (fully adapted from the aforementioned ASGI Django guide):

[Unit]

Description=gunicorn socket

[Socket]

ListenStream=/run/gunicorn.sock

[Install]

WantedBy=sockets.target

https://www.digitalocean.com/community/tutorials/systemd-essentials-working-with-services-units-and-the-journal
https://www.digitalocean.com/community/tutorials/systemd-essentials-working-with-services-units-and-the-journal
https://www.digitalocean.com/community/tutorials/systemd-essentials-working-with-services-units-and-the-journal

Caching with Redis and Deployment on Ubuntu (DigitalOcean) and Netlify286

5. To leave nano, just type Ctrl + X and type yes when asked to confirm. The filename should
remain the same as what we gave it initially.

6. Now, we are going to create the gunicorn.service file. Again, fire up nano with the
following command:

sudo nano /etc/systemd/system/gunicorn.service

7. Begin typing the following:

[Unit]

Description=gunicorn daemon

Requires=gunicorn.socket

After=network.target

[Service]

User=farmuser

Group=www-data

WorkingDirectory=/home/farmuser/apiserver/FARM-chapter9-
backend

ExecStart=/home/farmuser/apiserver/venv/bin/gunicorn \

 --access-logfile - \

 -k uvicorn.workers.UvicornWorker \

 --workers 3 \

 --bind unix:/run/gunicorn.sock \

 main:app

[Install]

WantedBy=multi-user.target

I have highlighted the essential parts and paths that you should triple-check before saving. It
is important to emphasize that the working directory is the directory hosting our code, while
execstart is referring to the virtualenv directory. In our case, they are side by side
inside the apiserver folder! This should be enough for systemd.

8. Save the file and let’s try it out. Start and enable the newly created gunicorn socket with the
following commands:

sudo systemctl start gunicorn.socket

sudo systemctl enable gunicorn.socket

Deploying FastAPI on DigitalOcean (or really any Linux server!) 287

9. If everything went right, there shouldn’t be any errors. You should, however, check the status
of the socket:

sudo systemctl status gunicorn.socket

10. You should also check for the existence of the gunicorn.sock file:

file /run/gunicorn.sock

11. Now, activate the socket:

sudo systemctl status gunicorn

12. With that, we should be able to (finally!) test our API with curl:

curl --unix-socket /run/gunicorn.sock localhost/cars/all

You should get a bunch of cars flooding the terminal since we’ve hit our cars endpoint!

We’re nearly there, hang on! Now, we will use Nginx to route the incoming traffic. Follow these steps:

Important Note
Nginx is an extremely powerful, reliable, and fast web server, load balancer, and proxy server. At
its most basic, Nginx reads its configuration and, based on this information, decides what to do
with each request that it encounters – it can simultaneously handle multiple websites, multiple
processes, and the most diverse configurations that you throw at it. You may have a bunch of
static files, images, and documents in one location on the server, a Node.js API managed by
PM2, a Django or Flask website, and maybe a FastAPI instance all at once. With the proper
configuration, Nginx will be able to effortlessly take care of this mess and always serve the right
resource to the right client. At least some basic knowledge of how Nginx operates can be a
very useful tool to have under your belt, and the nginx.org website is a great place to start.

13. Nginx operates in server blocks, so let’s create one for our apiserver:

server {

 listen 80;

 server_name <your droplet's IP address>

 location = /favicon.ico { access_log off; log_not_
found off; }

 location / {

 include proxy_params;

 proxy_pass http://unix:/run/gunicorn.sock;

http://nginx.org

Caching with Redis and Deployment on Ubuntu (DigitalOcean) and Netlify288

 }

}

Once you get used to Nginx’s server block syntax, you will be serving websites (or processes,
to be precise) in no time. In the preceding code, we instructed Nginx to listen on the default
port (80) for our machine (IP address) and to redirect all traffic to our Unix Gunicorn socket!

14. Now, enable the file by copying it to the sites-enabled folder of Nginx, as follows:

sudo ln -s /etc/nginx/sites-available/myproject /etc/
nginx/sites-enabled

There is a very handy command that allows us to check if the Nginx configuration is valid:

sudo nginx -t

15. If Nginx is not complaining, we can restart it by typing the following command; then, we
should be good to go:

sudo systemctl restart nginx

16. The last thing we must do is set up the ufw firewall again, allow Nginx to pass through, and
close port 8000 by removing the rule that allowed it:

sudo ufw delete allow 8000

sudo ufw allow 'Nginx Full'

Congratulations! You are now serving your API through a robust setup that consists of Uvicorn,
Gunicorn, and Nginx. With this setup, we have a plethora of options. You could serve static files (images,
stylesheets, or documents) blazingly fast through Nginx. You could also set up a Next.js project and
manage it through PM2 (https://pm2.keymetrics.io/), a powerful Node.js process manager.
We will stop here, although there are many – not so complicated – steps to go through before we have
a production-ready system.

Adding caching with Redis
Redis is among the top technologies when it comes to NoSQL data storage options, and it is very
different from MongoDB. Redis is an in-memory data structure store, and it can be used as a database,
cache, message broker, and also for streaming. Redis provides simple data structures – hashes, lists,
strings, sets, and more –and enables scripting with the Lua language. While it can be used as a primary
data store, it is often used for caching or running analytics and similar tasks. Since it is built to be
incredibly fast (much faster than MongoDB, to be clear), it is ideal for caching database or data store
queries, results of complex computations, API calls, and managing the session state. MongoDB, on
the other hand, while being fast and flexible, if it scales sufficiently, could slow down a bit. Bearing
in mind that we often (as is the case in this chapter) host MongoDB on one server (Atlas Cloud) and

https://pm2.keymetrics.io/

Adding caching with Redis 289

our FastAPI code on another one (DigitalOcean or Heroku), latency also might affect the response
times. Imagine if we wanted to perform a complex aggregation instead of the simple ones that we have
created in this chapter. By throwing in some data science, such as algorithms with interpolations or
machine learning algorithms, we could be in trouble should our website become popular (and it will!).

Caching to the rescue! What is caching? It is a really simple concept that has been around for decades
– the basic idea is to store some frequently requested data (from a Mongo database, in our case) in
some type of temporary storage for some time until it expires. The first user requesting said resource
(a list of cars) will have to wait for the whole query to complete and will get the results. These results
will then automatically be added to this temporary storage (in our case, Redis, the Usain Bolt of
databases) and served to all subsequent requests for the same data. By the same data, we usually imply
the same endpoint. This process persists until the data stored in Redis (or any other caching solution
that you may use) expires – if valid data is not found in the cache, the real database call is made again
and the process repeats.

The expiry time is of crucial importance here – in our case, if we are working with a car-selling company,
we can be generous with caching and extend the expiry period to 10 minutes or even more. In more
dynamic applications, such as forums or similar conversational environments, a much lower expiry
time would be mandatory to preserve functionality.

Installing Redis on Linux is quite simple, while on Windows it is not officially supported. You could
follow the official guide for installing Redis for development purposes on Windows (https://
redis.io/docs/getting-started/installation/install-redis-on-windows/)
but that is beyond the scope of our application. We will, however, install Redis on our DigitalOcean
Linux box and add caching to our FastAPI application!

Connect to your DigitalOcean box (or to your Linux system of choice – if you are developing on
Linux or Mac, you should install it there as well) by following the steps from this chapter, while using
SSH from a terminal:

1. Now, install Redis by typing the following command:

sudo apt install redis-server

Important Note
In a production environment, you should secure your Redis server with a disgustingly long
password. Since Redis is fast, an attacker could potentially run hundreds of thousands of
passwords in mere seconds against it during a brute-force attack. You should also disable or
rename some potentially dangerous Redis commands. In these pages, we are only showing how
to add a bare-bones, not-secured Redis instance to our setup.

https://redis.io/docs/getting-started/installation/install-redis-on-windows/
https://redis.io/docs/getting-started/installation/install-redis-on-windows/

Caching with Redis and Deployment on Ubuntu (DigitalOcean) and Netlify290

2. Now, we should restart the Redis service. Although it should happen automatically, let’s make
sure by typing the following command:

sudo systemctl restart redis.service

3. Test it by typing the following command to see if it is working:

sudo systemctl status redis

The Terminal will send an ample response, but what you are looking for is the green word
Active (running). It should also be started automatically with every reboot – so we get that
going for us, which is nice.

4. The traditional way to test that Redis is responding is to start the client:

redis-cli

Then, in the Redis shell, type ping.

Redis should respond with pong and the prompt should say 127.0.0.1:6379. This means that Redis
is running on localhost (the Linux server) on port 6379. Remember this address, or better, write it
down somewhere (I know, I know). We are going to need it for our FastAPI server.

There are many ways to make Redis talk to Python, but here, we will opt for a simple module aptly
named Fastapi-cache (https://github.com/long2ice/fastapi-cache). Now, we will
have to edit our backend code in the /backend folder. When we’re done, we will push the changes
to GitHub and repeat the deployment procedure. Or, if you just want to quickly try out the caching,
you could edit the files on DigitalOcean directly by navigating to the directory and using nano.

Anyway, activate the virtual environment of your choice and install the package and aioredis (the
async Python Redis driver):

pip install fastapi-cache2 aioredis

Now, our FastAPI project structure dictates which files need to be updated. We need to update our
main.py file and add the following imports:

import aioredis

from fastapi_cache import FastAPICache

from fastapi_cache.backends.redis import RedisBackend

Then, we need to update our startup event handler:

@app.on_event("startup")

async def startup_db_client():

 app.mongodb_client = AsyncIOMotorClient(DB_URL)

https://github.com/long2ice/fastapi-cache

Adding caching with Redis 291

 app.mongodb = app.mongodb_client[DB_NAME]

 redis = aioredis.from_url(

 "redis://localhost:6379", encoding="utf8", decode_

 responses=True

)

 FastAPICache.init(RedisBackend(redis), prefix="fastapi-

 cache")

The code makes sense – we’re getting a Redis client, just like we did with Mongo, and we are passing
the URL and a couple of (suggested) settings. Finally, we initialized the FastAPICache. Now, we need
to add the caching decorator to our endpoints, which are located in the /routers/cars.py file.
We will add one import:

from fastapi_cache.decorator import cache

Now, we can decorate the routes that we wish to cache (only GET requests, but that’s all we have in
this project really). Edit the /sample route:

@router.get("/sample/{n}", response_description="Sample of N
cars")

@cache(expire=60)

async def get_sample(n: int, request: Request):

 query = [

 {"$match": {"year": {"$gt": 2010}}},

 {

 "$project": {"_id": 0,}

 },

 {"$sample": {"size": n}},

 {"$sort": {"brand": 1, "make": 1, "year": 1}},

]

 full_query = request.app.mongodb["cars"].aggregate(query)

 results = [el async for el in full_query]

 return results

This route is now cached, which means that when it’s hit, it will provide a sample of size N and then,
for all subsequent requests in the next 60 seconds, it will send the same cached response. Go ahead
and try it out, either on your DigitalOcean API or local environment, depending on where you
implemented caching. Try hitting the API for 1 minute – you should always get the same result until the
cache expires. Congratulations – you have just added a top-of-the-class caching solution to your API!

Caching with Redis and Deployment on Ubuntu (DigitalOcean) and Netlify292

Deploying the Frontend on Netlify
Similar to Vercel, Netlify is one of the top companies providing services for static web hosting and
serverless computing, but also a rather simple CMS and goodies such as form handling. It is widely
regarded as one of the best solutions for hosting JAMStack websites and its content delivery network
(CDN) can speed up the hosted websites significantly. It is also one of the easiest ways to host a React
application. This is what we are going to use it for in this section.

After logging in with your Google or GitHub account, you will be presented with a screen that offers
you the possibility to deploy a new project:

Figure 10.1 – The Netlify Add New Site button

Next, you will be asked whether you are importing an existing project (yes!); you should choose your
React frontend project from GitHub. If you logged in with GitHub, you won’t have to authorize Netlify
again – if not, please authorize it:

Figure 10.2 – The Import and existing project page on Netlify

Deploying the Frontend on Netlify 293

After browsing through your GitHub projects, point Netlify to the React frontend and leave all the
defaults that Netlify was able to cleverly infer from the project. You will be presented with a page on
which you could potentially modify any deployment setting, but we will limit ourselves to just adding
a single environment variable. You’ve guessed it – it’s the handy REACT_APP_API_URL!

Figure 10.3 – Netlify’s pre-deployment setting page

Caching with Redis and Deployment on Ubuntu (DigitalOcean) and Netlify294

You will have to add just one variable in the advanced settings: you’ve guessed it – REACT_APP_API_
URL. Create a New variable by hitting the respective button and name it REACT_APP_API_URL.
The value should be https://yourdomain.com:

Figure 10.4 – Adding the new environment variable in Netlify

After some time, maybe a minute or so, you will have your deployment ready for the world to see! In
case of any problems (and there will be problems), you should inspect Netlify’s deployment console
and watch for hiccups.

Your React frontend with all its fancy charts and fast pagination will now be served from Netlify’s fast
content delivery network (CDN) while operating on a FastAPI (cached) backend served by Nginx
on DigitalOcean. Throw in our previously explored Heroku and Vercel deployments and you have a
lot of options to start tinkering!

This doesn’t mean that these are your only deployment options! A popular and rock-solid choice is
to use a Docker container and containerize your application (together or separately) and provide this
Docker image to some of the giants – Amazon Web Services (AWS), Microsoft Azure, or Google
App Engine. This type of deployment isn’t much different from the Heroku deployment, although it
requires creating the proper type of account and setting the environment the right way. These solutions
also tend to have higher upfront costs.

https://yourdomain.com

Summary 295

Summary
In this chapter, we added a very simple yet powerful caching solution based on Redis – an incredibly
powerful product in its own right. We went through the tedious but often necessary procedure of
hosting the API on a Ubuntu server behind Gunicorn and the mighty Nginx – a server that offers
so much flexibility and configurability that it simply has to be put in the conversation of the FARM
stack. As a bonus, we explored yet another cheap (well, free) frontend hosting option – Netlify – which
offers premiere continuous deployment and plays very nicely with all our frontend solutions, be it
plain React or Next.js or maybe, in the future, React-Remix. Now, you should feel confident enough
to dive head-first into your next project and peruse the numerous options that FastAPI, React, and
MongoDB have to offer by playing nicely with each other.

In the next chapter, we will try to address some of the best practices that pertain to the components of
the stack in every project, as well as some topics that we haven’t touched on but are equally important,
such as testing, using static templates with Jinja2, site monitoring, and more.

11
Useful Resources and

Project Ideas

In the final chapter of this guide to building applications with FastAPI, React, and MongoDB, we will
use the FARM stack components to briefly touch on or cover topics that are important, often crucial,
but haven’t been discussed in the previous chapters, as well as reccomend some further further actions
that you could partake if you want to deepen your understanding of the technologies that build up
this interesting and flexible stack.

We will provide you with some guidelines when it comes to building data-driven or data-intensive
applications, as well as some practical advice when working with the FARM stack and maybe some ideas
for projects where the FARM stack (or very similar stacks) could fare pretty well. As a side note, I will
add a couple of thoughts on learning and finding your way in the ever-growing and always-changing
web development and analytics fields. This will be helpful for those who come from the most diverse
backgrounds, but their jobs or maybe their newfound passion drives them to find a path through the
data-driven world of the 21st century.

In this chapter, we will cover the following topics:

• MongoDB Considerations

• FastAPI and Python Considerations

• React Practices

• Other Topics

• Some project ideas to get started

Useful Resources and Project Ideas298

MongoDB considerations
In Chapter 2, Setting Up the Document Store with MongoDB, we provided a concise introduction to
MongoDB that should be enough to get you started with simpler projects. However, MongoDB is a
complex ecosystem employed by enterprise-level companies, so diving deeper into its features and
patterns will only benefit your developer’s abilities and understanding of the NoSQL paradigm.

One of the first steps in this direction is data modeling or schema design – and it is often said that
your data model should reflect how your application will see the data and its flow, starting from the
queries you will be making. There are advanced design patterns that apply to MongoDB schemas that
are beyond the scope of this book.

Some of the more popular MongoDB document modeling suggestions were mentioned in Chapter 2,
Setting Up the Document Store with MongoDB, but let’s add some more, formulated differently – they
tend to sound a bit like Haiku poetry:

• Objects should be combined, in the same document, if they are meant to be used together

• When separating objects into different documents, try not to make JOINs necessary, although
simple LEFT JOINS are possible through the Aggregation Framework

• The frequency of the data use cases should dictate the schemas – the most frequent data flows
should be the easiest to access

Coming from the relational database world, modeling relationships often boils down to the choice
between embedding and referencing. In our simple application of used cars, we opted to reference the
user ID when we made the CRUD application with the users since it was the simplest thing to do, but
that could probably apply to a real-world setting as well. There are numerous empirical rules, so to
speak – if the many sides of a one-to-many relationship could contain hundreds of items, embedding
is probably not the best way to go, and so on.

As one of the numerous and useful MongoDB guides provided by the Mongo Team itself states, in a
semi-joking tone, embedding should be preferred in relationships that are one-to-one, one-to-few, and
one-to-many, while referencing should be used in one-to-very-numerous-many and many-to-many cases
(https://www.mongodb.com/developer/products/mongodb/mongodb-schema-
design-best-practices/).

As a side note, Python drivers such as PyMongo and its async sibling, Motor, play extremely nicely with
MongoDB. Given Python’s rich data structure system and data processing capabilities, it is relatively
easy to change and mix things up, change schemas on the fly, and try out different types of documents
until you find the optimal (or suboptimal, but good enough) solution for your particular use case.

https://www.mongodb.com/developer/products/mongodb/mongodb-schema-design-best-practices/
https://www.mongodb.com/developer/products/mongodb/mongodb-schema-design-best-practices/

FastAPI and Python considerations 299

I want to finish this section by mentioning two interesting projects that could be included in some of
your applications: Beanie (https://roman-right.github.io/beanie/) is an Asynchronous
Python object-document mapper (ODM) for MongoDB based on Motor and Pydantic that can
speed up the creation of CRUD applications. Another interesting project is Mongita (https://
github.com/scottrogowski/mongita), which dubs itself as a SQLite for MongoDB. It could
be particularly interesting as an embedded database for lighter cases in which you want the keep the
data local, or for prototyping even before having to set up MongoDB or Atlas.

FastAPI and Python considerations
This book intentionally omits a brief Python tutorial and there are several reasons why this was a
decision from the start. Apart from becoming ubiquitous and omnipresent, it Python encompasses
data and text processing, web development, data science, machine learning, numerical computations,
visualizations, and virtually every possible aspect of computing (it has even had a brief excursion into
the browser’s world, the Kingdom of JavaScript). Python is a truly beautiful and peculiar language, built
with a purpose and developed over the years into the modern versions (3.6+ at the time of writing)
that we use now. Although its syntax and keywords are simple and the language has been written with
clarity in mind, it takes some time to learn and then some practice to learn the Pythonic way of doing
things. Being so popular as Python is, it has various benefits, so there are excellent Python books and
courses that emphasize the proper use of Python’s rich data structures and the way it treats objects and
functions, as well as the modern async paradigms that are often used in FastAPI and when interacting
with MongoDB. So, dedicating it a mere chapter or two couldn’t do it justice, in my humble opinion.

What is considered good practice in Python is valid in FastAPI. However, because FastAPI itself
translates simple Python functions (or even classes, inspired by Django’s class-based views) into REST
API endpoints so seamlessly, you don’t have to do anything out of the ordinary. FastAPI is built in a
way that favors you, the developer, giving you the necessary flexibility and smoothness that you may
even forget that you’re writing an API.

Some fairly generic considerations that should be part of your FastAPI development process are as
follows:

• Use Git and GitHub, learn a simple workflow, and stick to it. It is easier to learn one workflow
and use it until you get used to it and then switch, rather than trying to learn all the commands
at once, especially if you’re a one-man-band trying to automate or REST-ify a business process!

• Keep your environment variables in .env files, but also back them up somewhere (API keys,
external services credentials, and so on).

• If you haven’t already, even if you’re a seasoned Python developer or you have maybe written
just a text processing script or two, learn Python’s type hinting system. It is closely related to
Pydantic and it adds a layer of robustness to your overall code. It is also an integral part of
coding a FastAPI application.

https://roman-right.github.io/beanie/
https://github.com/scottrogowski/mongita
https://github.com/scottrogowski/mongita

Useful Resources and Project Ideas300

• Structure your application properly. Although it is very easy and tempting to create even a
feature-rich application in a single file, especially if you do not have a clear specification,
resist this urge. The FastAPI documentation site has an excellent page on structuring larger
applications and the internet already has some variations of it.

The main idea is to break the application into routers and Pydantic models so that they have separate
directories (we had a /routers directory in the book, so we should have had a /models directory
as well). These directories should each have an empty __init__.py, making them Python modules.
I put external service utilities either in a separate file or in a /utils directory, but you could go
granular, depending on the complexity of your app. Keep in mind that you will always end up with
an ASGI application that is the only endpoint referenced by your server of choice, be it Uvicorn or
something else.

Testing FastAPI applications

I have left out the most important topic that was not covered in this book for last – testing. Put simply,
testing is necessary to ensure that our application behaves the way it was supposed to. Without delving
into the theory of test-driven development (TDD) in which tests are written before the actual code,
here, I will just point out some specific issues that you may run into when working with the async
MongoDB driver (Motor) and FastAPI. Unit testing your API is essential and, to be honest, isn’t even
difficult to set up –every endpoint should be tested, and they should perform the tasks that they are
supposed to perform. While unit testing in Python already has several mature frameworks, such as
unittest and pytest, some FastAPI-specific points are worth mentioning.

The FastAPI documentation recommends (at the time of writing) that you use the TestClient provided
by Starlette. Francois Voron, in his excellent book published by Packt on FastAPI (Building Data
Science Applications with FastAPI), recommends a slightly more advanced setup using HTTPX (an
async HTTP library similar to Requests, developed by the Starlette team) and pytest-asyncio, making
the whole process completely asynchronous.

The inclusion of Pydantic makes testing FastAPI applications a pleasant experience and it enforces
certain practices that tend to produce more stable software. FastAPI’s automatic documentation, on
the other hand, is an incredibly helpful tool (that we haven’t used much in this book, since I opted for
REST clients) that saves you time and frequent trips between the code editor and the client.

React practices
In Chapter 1, Web Development and the FARM Stack, we chose React for our frontend because of its
apparent simplicity and flexibility. Don't be fooled by this apparent simplicity - writing serious React
applications is a complex endeavor! React is constantly at the top of the most used, loved, and popular
frontend technologies, so there is a plethora of React resources, books, courses, and tutorials covering
every facet of the library (if you are a visual learner, try the video course by Academind GMBH and its
main author, the eloquent and humorous Maximilian Schwarzmüller – React – The Complete Guide).

Other topics 301

We haven’t even scratched the surface of what is possible and what it means to begin developing
performant and maintainable React apps. Solid knowledge of JavaScript and ES6 is the best foundation
for becoming a better React developer, but it is also important to dive a bit deeper into some fundamental
React concepts and explore the Hooks mechanism, the components life cycle, and the components
hierarchy. Familiarize yourself with other hooks – in this book, we just glimpsed over two or three
of the most popular, but there are many more, and knowing how they work and especially why they
work the way they do will make you a better React developer.

As of 2022, React functional components (the only ones that we have seen in this book) are generally
preferred to older class-based ones as they are more concise, maintainable, and generally flexible. This
would also be my personal preference.

Other topics
In this section, we will further emphasize some other important points that might work in our favor
when using the FARM stack. While technically there is no barrier, you should be able to use the FARM
stack for virtually any type of web application that you can think of – as any tool, the stack might be
more suitable for some types of apps and less for others.

Authentication and authorization

An entire chapter in this book is dedicated to implementing a possible JWT-based authentication
solution with FastAPI and its consequent application in React. Yet, as mentioned in that chapter, that
might not be the best or even a viable solution – you may need to revert to a third-party provider such
as Firebase, Auth0, or Cognito. Before committing to a third-party solution, be sure to fully understand
the pros and cons and the consequences of a potential lock-in, especially if you are planning to scale
the application!

Data visualization and the FARM stack

We have built a couple of rather simple visualizations, but you can already imagine that with properly
formatted and granular JSON responses and React as the frontend, almost anything is achievable. This
possibility to practically mold the data in the way that you might need it for a particular visualization
opens, in my opinion, a great playground where you can test, tinker, and try out different solutions,
maybe through iterations, until you reach the type of data visualization that you are satisfied with.

There is a broad spectrum of visualization requirements and there is probably no need to try and craft
a Shirley Wu D3.js piece of art where a simple two-color stacked run-of-the-mill bar chart could have
done the job. However, with the availability of a fast backend and MongoDB accommodating virtually
any type of data structure that you might throw at it, you are ready for any task. D3’s Observable wrapper
has a very interesting interface and abstracts much of D3.js mechanisms, so it might be a good place
to start. Displaying high-res static charts may also be a very good option.

Useful Resources and Project Ideas302

Relational databases

If your business problem needs the complexity of relational databases and their strict structure,
querying with SQL and other features that only a relational database can provide doesn’t mean that
you have to ditch the FARM stack altogether! Given the modularity of FastAPI and using some of the
deployment options that we explored throughout this book, nothing is stopping you from plugging in
a relational database (Postgres, MySQL, and so on), exploring the documentation of SQLAlchemy or
some async database Python drivers, and simply adding said functionality while managing the users,
for instance, through MongoDB.

Some project ideas to get started
To end this book on a creative note, we will suggest some project ideas if you are willing to dive deeper
into the possibilities of the FARM stack and hone your skills, but above all, unleash your creativity.

Old School Portfolio website

This is a weird little project just to show off that FastAPI, React, and MongoDB are perfectly capable of
handling simple portfolio sites – an about page, service, gallery, contact form – the usual stuff. Create
a nice design (or steal one that you like and try to recreate it in Tailwind CSS!), plug in React-Router
or Next.js if you want to make it fast, and make use of server-side generation and image optimization.
For the content, define a couple of Pydantic models: a blog post, portfolio item, article – whatever fits
your needs – and then create simple routes for serving them via GET requests. Since this is a hardcore
developers blog, you don’t even need to create an authentication system and POST or PUT routes:
text-related content will be entered directly into MongoDB (Atlas or Compass) and images will go to
separate folders on Cloudinary, queried directly through the API. Of course, this is a bit of a joke, but
it would be great practice, nevertheless. Try incorporating markdown – a powerful text pre-processor
that converts simple text (markdown) into valid HTML. Both Python and ES6/React have excellent
libraries for handling markdown, so try to find a good combination.

React Admin Inventory

The idea is to try and create an inventory system built on top of React-Admin (https://marmelab.
com/react-admin/), with authentication from Auth0 or Firebase, and a public-facing interface.
React-Admin provides an admin interface similar to the one used by Django and it is based on CRUD
verbs: each resource (or item) that exposes interfaces for POST, PUT, GET, and DELETE operations
can be edited, deleted, and read and new instances can be created. Explore the package and try to
think of some type of collection that you may want to manage. Bear in mind that there are excellent
tools such as Airtable (an online spreadsheet-like application) that expose REST APIs that can be
called from your FastAPI routes!

https://marmelab.com/react-admin/
https://marmelab.com/react-admin/

Some project ideas to get started 303

Plotly-Dash or Streamlit – like exploratory data analysis
application

Pick a dataset that you are familiar with – when I was starting to play with data, I always felt most
confident with basketball-related data from the NBA: it is easy to spot correlations and outliers with the
bare eye when you know where the data comes from and how it was generated. For instance, it’s rare
to find a player that shoots like Steph Curry but dunks like Russell Westbrook. Try creating an input
pipeline that programmatically accepts data (and test it out thoroughly!) – be it from a little web or,
better, API scraper or from an input file that uploads a JSON or CSV file. Clean the data, preprocess
it, and insert it into the MongoDB datastore. From there, and based on the structure of the data at
hand, try to figure out some useful filters and controls, not unlike enterprise tools such as Tableau
or Google Data Studio – if you’re already familiar with data like that, you will know what to expect.
The only difference here is that you are free as a bird and you can build your way up while exploring,
coding, and having fun. To return to my NBA players example, you could prepare MongoDB queries
that separate players by position, team, age, and years of experience as a first stage. After that, you
can fire up a Jupyter notebook, install a couple of visualization libraries (I like Plotly!), and see what
types of correlations or groupings can come up. After you have found some interesting pandas-driven
data wranglings, you can just extract them into separate functionalities, test them out a bit, and then
incorporate them into FastAPI endpoints, ready to be visualized with D3.js or Chart.js. Finally, you
could deploy your application and share it with your friend that manages your fantasy team to show
him the data backing your draft decisions. We have seen how easy it is to embed a machine learning
model built with Scikit-Learn, so give it a go: try embedding a neural network model, if that’s your
thing, with Keras or try out some simple linear regression!

Previous knowledge of data visualization and exploration frameworks such as Streamlit or Dash will
help you.

A document automation pipeline

I don’t know about you, but I have always been surrounded by repetitive documents that have the same
structure – be they Word documents with a branded header and footer and three colors and five font
sizes, or Excel reports with the same column headers and colors and maybe even some (Excel) charts
inside of them. Try to think of a document server based on the docx-tpl package, which allows you
to define a Word template, formatted as it should be, and then pass a context containing all the data
that needs to be in the document – text, images, tables, paragraphs, and titles – all while maintaining
the initially defined styles. Similar and even more powerful automation can be achieved with Excel
– using pandas for complex calculations, pivoting, and merging different documents into one. After
creating the templates, try to think of some FastAPI endpoints that would perform POST requests
and save the posted data to a MongoDB database, along with the data (for instance, the title of the
document, the author, the data, and so on), and then trigger a DOCX or XLSX document render.
Save the file with a recognizable name (maybe by adding the current time or the UUID library, for
uniqueness) in a directory and ensure this directory is servable, either by FastAPI directly (via the

Useful Resources and Project Ideas304

static files functionality) or, in case you plan to have a significant number of heavy documents, maybe
even an entire Nginx server block – after all, this is what Nginx excels at (pun intended). These files
could then be accessible to all the team members or even sent directly via mail with a CRON job or
something similar. Seemingly silly projects like this often result in incredible work time reductions
in the long run.

Summary
In this brief chapter, we added some pointers for further development and fortifying your FARM
stack knowledge and experience, as well as some project ideas that you should customize and use as
a starting point for your very own projects.

It has been quite a ride! We have made the case for a new and modern stack – the FARM stack – and
we have introduced the protagonists.

You have learned how to perform simple and not-so-simple operations with MongoDB and create,
read, query, and aggregate data that will later be converted into endpoints for your applications. You
should also be comfortable setting up a MongoDB document store in the cloud or locally and wrangling
data through the shell, the Compass GUI, or code.

We introduced FastAPI – probably our first billed actor in this web development action movie – a
simple, clean, and fast Python framework that allows us to bridge the gap between our ideas and
our code in an elegant, fast, and developer-friendly way, using the experience of the most successful
Python web solutions from the past and the present.

You are now able to create user interfaces that match the workflow of your application and, more
importantly, your data flow. Even though we barely explored the very basics of React, you should be
able to take it from here and dive deeper and deeper into concepts such as state management – local
and global, custom hooks, component life cycles, and much more.

We have created numerous simple or mildly complex applications to showcase the capabilities and the
flexibility of the stack, but also as a way of helping you get started quickly – we explored server-side
rendering and image optimization with Next.js, sent emails, manipulated images, and performed data
visualizations as a part of what can easily be achieved with the FARM stack.

Finally, we deployed our web applications through a myriad of free or very cheap services, since I
strongly believe that without that last step, the development process, especially while learning new
concepts, isn’t as gratifying as it could and should be.

I believe that the FARM stack has a bright future as a stack of choice for professional development teams
and data wranglers or freelancers who just need to tell a story through a web application. I hope you
have enjoyed this journey as much as I have, and I look forward to you building some FARM stack apps!

Index

A
aggregation framework 52-56
Amazon Web Services (AWS) 294
APIs communication

using, with useEffect 105-111
Application Programming Interface (API) 9
arrays 23
asynchronous I/O 65, 66
Asynchronous JavaScript and XML (AJAX) 13
Asynchronous Python object-document

mapper (ODM) 299
Asynchronous Server Gateway

Interface (ASGI) 11, 280
authentication mechanism

requirements 166
authentication, with API routes and

httpOnly cookies in Next.js
about 217-222
Login.jsx component, updating 224-227
React Context API and custom hook 223

authorization 301

B
backend

creating 244-249

Background Tasks 268-277
Beanie

about 299
reference link 299

binary data 23, 24
binary JSON (BSON) 119
Booleans 22
BrowserRouter 112

C
chaining of methods 51
Chart.js

dashboard, building with 261
frontend, building with 253-255

Cloudinary account
creating 199
reference link 199

Cmder 281
Code Editors 59
Commander

URL 59
Comma-Separated Values (CSV) 244
content delivery network (CDN) 292, 294
create-react-app 90, 91

Index306

Create, Read, Update, Delete (CRUD) 26
cross origin resource sharing (CORS) 128-30
cursors 51, 52

D
DaisyUI

URL 178
data modeling 24
data visualization 301
date types 23
DigitalOcean

FastAPI, deploying on 280-288
reference link 280

DigitalOcean knowledge database
reference link 285

Django REST Framework (DRF) 5
document automation pipeline 303, 304
documents

creating 49
deleting 50
updating 49, 50

E
embedded documents 22
embedded relationships 23

F
FARM 58
FARM stack

about 4-6, 261, 301
advantages 7
web development, evolution 7

FastAPI
about 9, 10, 61
asynchronous I/O 65, 66

benefits 11
connecting, to MongoDB 121, 122
consideration 299
deploying, on DigitalOcean 280-288
Pydantic 62-65
Python type hinting 61, 62
REST API framework 66, 67
Starlette 61

FastAPI application
about 116
automatic documentation 70
creating 67-70
MongoDB instance, creating for 117
structuring, with routers 123-128
testing 300

FastAPI backend
creating 117, 118
ObjectIds issue 119, 120
Pydantic models, creating 119, 120
using, with users and relationships 161

FastAPI response, customization
about 85
HTTP errors 86, 87
HTTP status codes, setting 85, 86

FastAPI REST API
updating 200-207

FastAPI routes 302
frontend

creating, with React 136
deploying, on Netlify 292-294

functional components 96
functional web application requisites

database layer 4
development environment 4
operating system 4
web server 4

Index 307

G
graphical user interface (GUI) 25
Gunicorn

about 284
URL 284

H
Heroku

deployment to 131-133
FastAPI, deploying to 240, 241
reference link 131

Heroku CLI
download link 131

HTTP errors 86, 87
HTTPie

URL 59
HTTP status codes

setting 85, 86
Hypertext Transfer Protocol (HTTP) 9

I
image processing

Python Pillow, integrating for 208, 209
images and files

managing, in backend 199
Infrastructure as a Service (IaaS) 280
Insomnia

URL 59
integrated development

environments (IDEs) 59
Internet of Things (IoT) 26
Issued at (iat) 160

J
JavaScript, API(s), and Markup (JAM) 7
JavaScript Object Notation (JSON) 21, 76
JSON Web Token (JWT)

about 82, 160
reference link 160

JSX 93

L
LAMP 5
Login.jsx component

updating 224-227
long-term support (LTS) 32

M
MEAN 5
MERN 5
Mocha 13
model 54
Model-View-Controller (MVC) 5
Mongita 299
MongoDB

about 8
considerations 298, 299
FastAPI, connecting to 121, 122
features 8
installing 25, 26
need for 9
querying 43-48
reference link 46

MongoDB Aggregation Framework 250-253
MongoDB Atlas

about 25
setting up 33-38

Index308

MongoDB commands
options, for executing 44

MongoDB Community Edition 25
MongoDB Compass

about 25
data, importing/exporting with 39-43
installing, on Linux-Ubuntu 32, 33
installing, on Windows 26-31

MongoDB database
and collections, creating 200
documents 20, 21
structure 20
using, with collections 24

MongoDB Database Tools
about 26
reference link 30

MongoDB instance
creating, for FARM stack app 117

MongoDB, numbers
decimal 22
double 22
int 22
long 22

MongoDB relationships
creating 161-177

MongoDB schema design best practices
reference link 298

MongoDB Shell 26
MongoEngine 122

N
Netlify

frontend, deploying on 292-294
Next.js

about 209
authentication, with API routes and

httpOnly cookies 217-222

car list page, creating 234-237
features 210
pages, creating for inserting

new cars 230-233
statically generated pages, creating

for individual cars 237-239
Next.js middleware

about 228, 229
reference link 229

Next.js-powered Car Sales application
_app.js component, customizing 212, 213
environment variables, setting up 213
header navigation, creating 215-217
required pages, scaffolding 214, 215
scaffolding 210, 211
styling, with Tailwind CSS 211, 212

Next.js routing
reference link 237

Nginx
about 287
URL 287

Node.js
download link 90

Npx 90

O
ObjectIds 23
object-relational mapper (ORM) 122
objects 22
Old School Portfolio website 302

P
path parameter

retrieving 71-75
PERN 5
pipeline 52

Index 309

pipenv
reference link 59

platform-as-a-service (PaaS) 131
Plotly-Dash 303
Postman

URL 59
projection 48
Pydantic 62-65
pyenv

reference link 59
PyMongo

reference link 124
Python

consideration 299, 300
setup 58
using, with REST APIs 12

Python libraries
packages, installing 60

Python Pillow
integrating, for image processing 208, 209

Python type hinting 61, 62

Q
query parameter

retrieving 71-75

R
React

about 13
benefits 13-17
components 95-99
components, building 99-101
elements 93, 94
pagination 256-260
practices 300, 301
setting up 136

used, for creating Frontend 136
users, authenticating 177-192
using, for data visualization 261-267

React Admin inventory 302
React app

creating 90, 91
React Developer Tools 90
React-Form-Hook

URL 183
React Framework For B2B Apps

reference link 302
React hooks 102
React Router

exploring 111
React Router 6

car details, creating 152-154
installing 137, 139
layout and components, creating 139-141
pages functionalities, creating 142-151
setting up 137-139
update/delete page, creating 152-158

Redis
caching, adding with 288-291

refresh tokens 177
Regres 106
relational databases 302
request body 76-80
request object 81
REST API framework 66, 67
REST API request-response cycle, elements

about 71
cookies 82
FastAPI response customization 85
files 83-85
form data 83-85
header parameters 82
path parameter, retrieving 71-76
query parameter, retrieving 71-76

Index310

request body 76-80
request object 81

REST APIs
about 9, 10
client-server architecture 10
layered structure 10
Python, using with 12
statelessness 10

REST client 59, 60
routers

FastAPI applications, structuring
with 123-128

S
Sample App

about 198
specifications 198

SendGrid
about 274
reference link 274

side effects 106
Single Page Applications (SPAs) 111
stack 3
stale-while-revalidate (SWR)

about 256-260
frontend, building with 253-255
URL 256

Starlette 61
state 102
stateful variables

creating, with useState 102-105
statically generated (SSG) 234
Streamlit 303
strings 21
Styled Components 91

SyntheticEvent
reference link 104

systemd 285

T
Tailwind

reference link 212
setting up 136

Tailwind CSS
about 91
URL 91

Tailwind CSS framework
installing, in cars project 92

test-driven development (TDD) 300

U
useContext 111
useEffect

used, for communicating with APIs 105-111
useMemo hook 111
User Account Control (UAC) 29
user interface (UI) 102
user model

creating 161-176
users, React

authenticating 177-192
useState

used, for creating stateful variables 102-105
Uvicorn 122

Index 311

V
Vercel

FastAPI, deploying to 240, 241
reference link 240

virtual environment 58, 59

W
Windows

MongoDB Compass, installing 26-31

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well as
industry leading tools to help you plan your personal development and advance your career. For more
information, please visit our website.

Why subscribe?
• Spend less time learning and more time coding with practical eBooks and Videos from over

4,000 industry professionals

• Improve your learning with Skill Plans built especially for you

• Get a free eBook or video every month

• Fully searchable for easy access to vital information

• Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at packt.com and as a print book customer, you
are entitled to a discount on the eBook copy. Get in touch with us at customercare@packtpub.
com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a range of
free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

http://Packt.com
http://packt.com
http://www.packt.com

314 Other Books You May Enjoy

Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Building Python Web APIs with FastAPI

Abdulazeez Abdulazeez Adeshina

ISBN: 978-1-80107-663-0

• Set up a FastAPI application that is fully functional and secure

• Perform CRUD operations using SQL and FastAPI

• Manage concurrency in FastAPI applications

• Implement authentication in a FastAPI application

• Deploy a FastAPI application to any platform

https://www.packtpub.com/product/building-python-web-apis-with-fastapi/9781801076630?utm_source=github&utm_medium=repository&utm_campaign=9781801076630

315Other Books You May Enjoy

React Projects - Second Edition

Roy Derks

ISBN: 978-1-80107-063-8

• Create a wide range of applications using various modern React tools and frameworks

• Discover how React Hooks modernize state management for React apps

• Develop web applications using styled and reusable React components

• Build test-driven React applications using Jest, React Testing Library, and Cypress

• Understand full-stack development using GraphQL, Apollo, and React

https://www.packtpub.com/product/react-projects/9781801070638?_ga=2.104366528.114113697.1658913391-178114784.1602593722

316

Packt is searching for authors like you
If you’re interested in becoming an author for Packt, please visit authors.packtpub.com and
apply today. We have worked with thousands of developers and tech professionals, just like you, to
help them share their insight with the global tech community. You can make a general application,
apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

Hi!

I am Marko Aleksendrić, author of Modern Web Development with the FARM Stack. I really hope
you enjoyed reading this book and found it useful for increasing your productivity and efficiency in
developing interesting web applications.

It would really help me (and other potential readers!) if you could leave a review on Amazon sharing
your thoughts on Modern Web Development with the FARM Stack. Please click here to go
straight to the Amazon review page for this book and share your feedback.

Your review will help me to understand what’s worked well in this book, and what could be improved
upon for future editions, so it really is appreciated.

Best Wishes,

http://authors.packtpub.com
https://packt.link/r/1-803-23182-3
https://packt.link/r/1-803-23182-3

	Cover
	Title Page
	Copyright and Credits
	Dedication
	Contributors
	Table of Contents
	Preface
	Part 1 – Introduction to the FARM Stack and the Components
	Chapter 1: Web Development and the FARM Stack
	What is the FARM stack and how does it fit together?
	Why the FARM stack?
	Evolution in Web Development

	Why use MongoDB?
	Introducing FastAPI
	REST APIs
	What is FastAPI?
	Python and REST APIs

	The frontend – React
	Why use React?

	Summary

	Chapter 2: Setting Up the Document Store with MongoDB
	Technical requirements
	The structure of a MongoDB database
	Documents
	Collections and databases

	Installing MongoDB and friends
	Installing MongoDB and Compass on Windows
	Installing MongoDB and Compass on Linux – Ubuntu
	Setting up Atlas
	Importing (and exporting) data with Compass

	MongoDB querying and CRUD operations
	Querying MongoDB
	Creating new documents
	Updating documents
	Deleting documents
	Cursors

	Aggregation framework
	Summary

	Chapter 3: Getting Started
with FastAPI
	Technical requirements
	Python setup
	Virtual environments
	Code Editors
	REST Clients
	Installing the necessary packages

	FastAPI in a nutshell
	Starlette
	Python type hinting
	Pydantic
	Asynchronous I/O
	Standard REST API stuff

	How does FastAPI speak REST?
	Automatic documentation

	Let’s build a showcase API!
	Retrieving path and query parameters
	The request body – the bulk of the data
	The request object
	Cookies and headers, form data, and files
	FastAPI response customization

	Summary

	Chapter 4: Setting Up a
React Workflow
	Technical requirements
	Let’s Create (a) React App
	Tailwind CSS and Installation

	JSX and the Components – the building blocks
	Components

	React Hooks, events, and state
	Creating stateful variables with useState

	Communicate with APIs using useEffect
	Exploring React Router and other goodies
	Summary

	Part 2 – Parts of the Stack Working Together
	Chapter 5: Building the Backend for Our Application
	Technical requirements
	Introducing our app
	Creating a MongoDB instance for our app
	Creating our FastAPI backend
	Deployment to Heroku
	Summary

	Chapter 6: Building the Frontend of the Application
	Technical requirements
	Creating our Frontend with React
	Setting up React and Tailwind
	Installing and setting up React Router 6
	Layout and components
	Creating the pages functionalities
	Creating the car details and the update/delete page

	Summary

	Chapter 7: Authentication and Authorization
	Technical requirements
	Understanding JSON Web Token – our key to security
	FastAPI backend with users and relationships
	Creating a User model and MongoDB relationships

	Authenticating the users in React
	Summary

	Part 3 – Deployment and
Final Thoughts
	Chapter 8: Server-Side Rendering and Image Processing with FastAPI and Next.js
	Technical requirements
	Introduction to our Sample App
	Managing images and files in the backend
	Creating a Cloudinary account
	Creating a new MongoDB database and collections
	Updating the FastAPI REST API
	Integrating Python Pillow for image processing

	Introduction to Next.js and our frontend project
	Scaffolding the application
	Authentication with API routes and httpOnly cookies in Next.js
	Creating the page for inserting new cars
	Creating the car list page
	Creating statically generated pages for individual cars

	Deployment to Heroku and Vercel
	Summary

	Chapter 9: Building a Data Visualization App with the FARM Stack
	Technical requirements
	The specification
	Creating the backend
	The MongoDB Aggregation Framework

	Building the frontend with SWR and Charts.js
	React pagination and SWR
	Building the dashboard with Chart.js
	Background Tasks

	Summary

	Chapter 10: Caching with Redis and Deployment on Ubuntu (DigitalOcean) and Netlify
	Deploying FastAPI on DigitalOcean (or really any Linux server!)
	Adding caching with Redis
	Deploying the Frontend on Netlify
	Summary

	Chapter 11: Useful Resources and
Project Ideas
	MongoDB considerations
	FastAPI and Python considerations
	Testing FastAPI applications

	React practices
	Other topics
	Authentication and authorization
	Data visualization and the FARM stack
	Relational databases

	Some project ideas to get started
	Old School Portfolio website
	React Admin Inventory
	Plotly-Dash or Streamlit – like exploratory data analysis application
	A document automation pipeline

	Summary

	Index
	About Packt
	Other Books You May Enjoy

