

Node.js: Novice to Ninja

Copyright © 2022 SitePoint Pty. Ltd.

Product Manager: Simon Mackie
Technical Editor: Ivaylo Gerchev
English Editor: Ralph Mason
Cover Designer: Alex Walker

Notice of Rights

All rights reserved. No part of this book may be reproduced, stored in a retrieval system or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embodied in critical articles or reviews.

Notice of Liability

The author and publisher have made every effort to ensure the accuracy of the information
herein. However, the information contained in this book is sold without warranty, either express or
implied. Neither the authors and SitePoint Pty. Ltd., nor its dealers or distributors will be held liable
for any damages to be caused either directly or indirectly by the instructions contained in this
book, or by the software or hardware products described herein.

Trademark Notice

Rather than indicating every occurrence of a trademarked name as such, this book uses the
names only in an editorial fashion and to the benefit of the trademark owner with no intention of
infringement of the trademark.

Published by SitePoint Pty. Ltd.
10-12 Gwynne St,

Richmond, VIC, 3121
Australia

Web: www.sitepoint.com
Email: books@sitepoint.com

ISBN 978-1-925836-52-3 (print)
ISBN 978-1-925836-53-0 (ebook)

Printed and bound in the United States of America

i

About Craig Buckler

Craig is a UK-based freelance full-stack web developer, writer, and speaker
who’s passionate about standards and performance.

He began coding in the 1980s and started client-side JavaScript development
on its release in 1995 when DHTML, spacer GIFs, and marquees were
considered sophisticated. You may have encountered his work at SitePoint,
where he’s written more than 1,200 tutorials, and books including Jump Start
Web Performance, Browser DevTool Secrets, and Docker for Web Developers.

Craig used Node.js from the start and hopes this book is a great first step on
your server-side JavaScript journey. Contact him on Twitter @craigbuckler or
at craigbuckler.com.

About SitePoint

SitePoint specializes in publishing fun, practical, and easy-to-understand
content for web professionals. Visit https://www.sitepoint.com/ to access our
blogs, books, newsletters, articles, and community forums. You’ll find a stack
of information on JavaScript, PHP, Ruby, mobile development, design, and
more.

ii Node.js: Novice to Ninja

https://www.sitepoint.com/premium/books/jump-start-web-performance/
https://www.sitepoint.com/premium/books/jump-start-web-performance/
https://www.sitepoint.com/premium/books/browser-devtool-secrets/
https://www.sitepoint.com/premium/books/docker-for-web-developers/
https://www.sitepoint.com/

Table of Contents

Preface... xvii

Chapter 1: What is Node.js?.................................. 1

Why Learn Node.js?...3

It’s JavaScript...3

It’s Fast ..4

It’s Real-time..5

It’s Lightweight ...5

It’s Modular ...5

It’s Extendible ..5

It’s Open Source.. 6

It’s Everywhere... 6

Summary...7

Quiz..7

Chapter 2: Install Node.js..9

Choosing a Node.js Version ... 11

Table of Contents iii

How to Install Node.js on Linux (or Windows WSL2)....... 11

Con!guring npm Global Permissions on Linux.......12

How to Install Node.js on macOS..13

How to Install Node.js on Windows .. 14

How to Install Node.js on Other Devices 14

Run JavaScript Commands in the Node.js REPL 14

Summary.. 16

Quiz... 16

Chapter 3: Your First Node.js

Application .. 18

Your First Console App.. 19

Your First Web Server App .. 25

Restarting Node.js Applications with Nodemon............... 32

Web Application Considerations.. 33

Summary.. 35

Quiz...36

Chapter 4: How to Debug Node.js

Scripts... 38

iv Node.js: Novice to Ninja

What is Debugging? ...39

How to Avoid Bugs..39

Use a Good Code Editor..39

Use a Code Linter...40

Use Source Control ...42

Adopt an Issue-tracking System...................................42

Use Test-driven Development43

Node.js Debugging Environment Variables43

Node.js Debugging Command-line Options44

Console Debugging..44

Node.js util.debuglog...47

Debugging with Logging Modules..47

Node.js V8 Inspector ..48

Debugging Node.js Apps with Chrome.................................49

Debugging Node.js Apps with VS Code 53

Advanced Debugging Con!guration56

Other Node.js Debugging Tools..58

Exercise: Debugging webhello.js ...59

Summary.. 61

Debugging Terminology ...62

Table of Contents v

Quiz...64

Chapter 5: Getting Started with Express

..66

Why use Express? ...67

Create a New Node.js Project ... 68

Switch to ES6 Modules ...70

Install Express...71

Create the Express Entry Script .. 73

Should You Switch to HTTPS? ... 77

Serve Static Files..78

Express Middleware Functions ... 81

De!ne Working Directories ...82

Compressing HTTP Responses ..84

Disable Express Identi!cation..85

Handle 404 Not Found Errors ... 86

Add an HTML Template Engine... 86

Advanced Routing... 91

Routing Path Expressions... 91

Routing Path Parameters..92

vi Node.js: Novice to Ninja

HTTP Route Methods ...92

Creating a Route Handler ...93

Exercises ..99

Summary..99

Quiz...99

Chapter 6: Processing Form Data with

Express... 101

Processing HTTP GET Query Strings....................................103

Processing HTTP Post Body Data..107

Processing Uploaded Files ..111

Exercises .. 117

Summary.. 118

Quiz... 118

Chapter 7: How to Use the npm Node

Package Manager ..120

Global vs Local Packages.. 121

npm Help ...122

npm Con!guration...123

Table of Contents vii

Project Initialization...123

Semantic Versioning ...127

Project Dependencies..127

Development Dependencies..127

Searching for Packages..128

Installing Packages ...130

Semantic Constraints ... 131

“No-install” Execution ..132

Listing Packages ..133

Finding Outdated Packages ...136

Removing Packages...137

Using npm Scripts ...138

Special Scripts ...139

Pre and Post Scripts ... 140

Life Cycle Scripts... 140

Sophisticated Scripting... 140

Publishing Packages ..142

Publishing Tips ..144

Exercises ..144

Summary..145

viii Node.js: Novice to Ninja

Quiz...145

Chapter 8: Using ES2015 and

CommonJS Modules ... 147

CommonJS..149

ES2015 Modules (ESM).. 151

Comparison of CommonJS and ES2015 Modules..........155

Importing CommonJS Modules in ES2015157

Requiring ES2015 Modules in CommonJS.........................157

Using ES2015 Modules in Browsers......................................157

Summary..158

Quiz...159

Chapter 9: Asynchronous Programming

in Node.js ... 161

Single-threaded Non-blocking I/O Event-looping

What?...162

Callbacks in Action ... 164

The Event Loop...165

Callback Conundrums.. 166

Table of Contents ix

Callback Hell ..170

Promises... 171

Parallel Promises.. 174

Promising Problems..176

async/await ...177

Promise.all() is Still Necessary179

try/catch is Ugly ...179

Asynchronous Awaits in Synchronous Loops...... 180

Exercises ..182

Summary..183

Quiz...184

Chapter 10: Using Database Storage....186

A Database-driven Web Application Example187

Installing and Con!guring Database Software.... 189

MongoDB.. 190

Start the MongoDB Application................................... 191

MongoDB Functionality...194

Stop the MongoDB Application 199

MySQL.. 199

x Node.js: Novice to Ninja

Start the MySQL Application...201

MySQL Functionality..204

Stop the MySQL Application..208

Sequelize ORM...208

Start the Sequelize ORM Application209

Sequelize ORM Functionality..210

How to Choose the Right Database......................................213

Native vs ORM Drivers..214

Exercises ..215

Summary..215

Quiz...217

Chapter 11: Using WebSockets.................... 219

What Are WebSockets?... 220

Example WebSocket Chat Application222

WebSocket Walkthrough.. 223

Advanced WebSockets Considerations............................. 226

Multiple WebSocket Servers 229

Exercise...231

Summary... 232

Table of Contents xi

Quiz.. 232

Chapter 12: Useful Node.js APIs..................234

Process .. 235

OS ... 237

Util .. 238

URL .. 239

File System...240

Events ... 244

Streams.. 248

Worker Threads ... 253

Child Processes ... 257

Clusters.. 258

Exercises ... 259

Summary... 259

Quiz..260

Chapter 13: Example Real-time

Multiplayer Quiz: Overview....................................262

Source Code.. 263

xii Node.js: Novice to Ninja

Quizzing Quick Start .. 263

Summary... 270

Chapter 14: Example Real-time

Multiplayer Quiz: Architecture 271

Why Develop Using Multiple Servers?................................272

1. One PostgreSQL Database Server 273

2. Two Express HTTP Web Servers..275

3. Three WebSocket Servers ... 276

4. One Trae!c Load Balancer ...277

5. Adminer Database Client...277

Docker Development Environment.......................................277

Docker Production Environment ... 279

Summary... 279

Chapter 15: Example Real-time

Multiplayer Quiz: Express Code 280

Database Library ..281

Question Database Initialization .. 287

Starting a New Game.. 294

Table of Contents xiii

Joining a Game... 297

Quiz Page..298

Summary..301

Chapter 16: Example Real-time

Multiplayer Quiz: WebSocket Code..............302

Initiating a WebSocket Connection...................................... 303

WebSocket Message Format304

PostgreSQL Pub–sub ..305

Game Logic..309

Joining a Game ... 297

Starting a Game...315

Answering a Question ..317

Leaving a Game.. 326

Exercises ... 328

Summary..331

Chapter 17: Node.js Tools and

Resources ...332

Perfect Package Pursuit .. 333

xiv Node.js: Novice to Ninja

Development Tools.. 335

Testing.. 336

Logging.. 337

Full-stack Frameworks... 338

Server-side Frameworks ... 339

Web Publishing, Content Management Systems, and

Blogging.. 339

Headless Content Management Systems340

Static Site Generators ...340

Database Drivers ..341

Templating ... 342

Command Line... 343

File System...240

Network ... 344

WebSockets .. 344

Images.. 345

Email.. 345

Security and Authentication ..346

Summary... 347

Table of Contents xv

Chapter 18: Node.js Application

Deployment..348

Pages vs Applications... 349

Node.js Application Preparation...351

Dedicated Server Hosting... 352

HTTP and HTTPS Considerations.............................. 353

Process Management ... 354

Use a Reverse Proxy .. 355

Static Site Hosting (Jamstack) .. 357

Serverless/Lambda Functions .. 357

Container Hosting... 359

Summary... 359

Chapter 19: Epilogue ..361

Is Node.js for You? .. 362

Is Deno Better?...364

Thank You for Reading!.. 365

Appendix A Quiz Answers 366

xvi Node.js: Novice to Ninja

Preface
This course will help you get started with Node.js in the shortest possible time.
Within a day or two you should have enough knowledge to write simple
applications.

Prerequisites

This course is for web developers taking their first steps with Nodes.js. Ideally,
you should understand web development concepts and technologies:

web browsers (client-side HTML, CSS, and JavaScript)
web servers (code to serve web pages and APIs)

It will help if you already know some JavaScript—perhaps from writing client-
side scripts. This book explains some aspects of JavaScript in relation to
Node.js, but you won’t find deep dives into variables, loops, functions, objects,
and so on.

A little knowledge of the command line, Git, and code editors such as VS Code
will also be useful.

Code Samples

Code in this book is displayed using a fixed-width font, like so:

<h1>A Perfect Summer's Day</h1>
<p>It was a lovely day for a walk in the park.
The birds were singing and the kids were all back at school.</p>

Where existing code is required for context, rather than repeat all of it, ⋮ will
be displayed:

Preface xvii

function animate() {
⋮

new_variable = "Hello";
}

Some lines of code should be entered on one line, but we’ve had to wrap them
because of page constraints. An ➥ indicates a line break that exists for
formatting purposes only, and should be ignored:

URL.open("https://www.sitepoint.com/responsive-web-
➥design-real-user-testing/?responsive1");

xviii Node.js: Novice to Ninja

Tips, Notes, and Warnings

Hey, You!

Tips provide helpful little pointers.

Ahem, Excuse Me ...

Notes are useful asides that are related—but not critical—to the

topic at hand. Think of them as extra tidbits of information.

Make Sure You Always ...

... pay attention to these important points.

Watch Out!

Warnings highlight any gotchas that are likely to trip you up along

the way.

Preface xix

What is
Node.js?

Chapter

1

1 Node.js: Novice to Ninja

Node.js is a JavaScript runtime, which means it runs programs written in
JavaScript. Most developers use it to create command-line tools or web
server applications.

Node.js was initially developed by Ryan Dahl. He took the V8 JavaScript
engine from Google’s Chrome browser, added some APIs, wrapped it in an

Skip Ahead?

That’s everything you need know about Node.js. If you’re eager to

start programming, skip ahead to Chapter 2. That said, it’s worth

revisiting this chapter later to learn about Node’s advantages and

core features.

JavaScript, JScript, ECMAScript, ES6, ES2015?

To make learning more confusing for beginners, JavaScript has

many names. It started life as “Live Script” in 1994. Netscape

rebranded it as “JavaScript” following a hasty deal with Sun

Microsystems, despite it bearing little resemblance to Java or

lightweight scripting. Microsoft couldn’t use that name, so it

became “JScript” in Internet Explorer.

In 2005, Mozilla (which grew out of Netscape) joined ECMA

International and standardized the language as “ECMAScript”.

Versions 1 to 3 documented the evolution of JavaScript up until

1999. Version 4 was abandoned, but ECMAScript 5 became the

standard supported by most browsers in 2009.

Work then started on ECMAScript 6—or “ES6”. The ?nal

speci?cation was approved in 2015, which led to yet another name:

“ES2015”. New speci?cations now arrive every year.

Rightly or wrongly, this course refers to “JavaScript” throughout.

References to speci?c versions (such as ES9/ES2018) are only

made if they affect the version of Node.js you need to use.

What is Node.js? 2

https://www.ecma-international.org/publications-and-standards/standards/ecma-262/

event loop, and launched it as an open-source product on Linux and macOS in
2009. The Windows edition arrived in 2011.

The Node Package Manager (npm) was introduced in 2010. It allowed
developers to use code modules published by others in their own projects.
There was no official ECMAScript module standard at the time, so Node.js and
npm adopted CommonJS.

The first (non-beta) release of Node.js arrived in 2015, with updates promised
every six months.

Node.js wasn’t the first JavaScript runtime, but unlike other options—such as
Rhino and SpiderMonkey—its popularity grew exponentially. Even those
writing PHP, Python, Ruby or other languages often use Node.js tools to
supplement their development processes.

Why Learn Node.js?

JavaScript is the most-used language on GitHub, and it’s ranked highly by
developers. Companies including Netflix, Uber, Trello, PayPal, LinkedIn, eBay,
NASA and Medium have adopted Node.js, and most professional developers
will have encountered Node.js tools.

Below, we’ll look at some of the reasons you should consider using Node.js.

It’s JavaScript

JavaScript is used on trillions of web pages, where it has a browser monopoly.
Every professional web developer requires JavaScript knowledge to program
client-side applications.

Server-side languages are more diverse. Historically, developers could opt for
PHP, Ruby, Python, C# (ASP.NET), Perl, or Java, but these have different
syntaxes and concepts. It can be difficult to switch contexts, so larger project
teams often split into frontend and backend developers.

3 Node.js: Novice to Ninja

https://github.com/mozilla/rhino
https://spidermonkey.dev/
https://madnight.github.io/githut/
https://insights.stackoverflow.com/survey/2021#most-popular-technologies-language
https://insights.stackoverflow.com/survey/2021#most-popular-technologies-language

Node.js allows a developer with frontend JavaScript knowledge to leverage
their skills on the backend. It won’t make you a full-stack developer overnight,
but the concepts are similar, and there’s less rigmarole when formatting JSON,
handling character sets, using WebSockets, and so on.

It’s Fast

Most server-side languages are fast enough, but few match the speed of
Node.js. The V8 engine is quick, and it evolves rapidly, having the weight of
Google and Chrome behind its development. Node.js also has a non-blocking,
event-driven I/O.

Let’s go through that again with less jargon. Most languages use synchronous
blocking execution. When you issue a command—such as fetching
information from a database—that command will halt further processing and
complete before the runtime progresses to the next statement. To ensure that
multiple users can have access at the same time, web servers such as Apache
create a new processing thread for every request. This is an expensive
operation, and Apache has a default limit of 150 concurrent connections. Busy
servers can become overloaded.

Node.js code (and browser JavaScript) runs on a single processing thread.
Long-running tasks such as a database query are processed asynchronously,
which doesn’t halt execution. The task runs in the background, and Node.js
continues to the next command. When the task is complete, the returned data
is passed to a callback function. A Node.js program can have many hundreds
of ongoing operations that are completed whenever they’re finished, meaning
that the processor is free to tackle other tasks.

JavaScript Alternatives

Some developers prefer languages such as TypeScript, PureScript,

CoffeeScript, Reason, and Dart, which can transpile to JavaScript

and run in a browser or Node.js. Ultimately, it still results in

JavaScript code.

What is Node.js? 4

Asynchronous programming has challenges, but it’s possible to create fast
Node.js applications that scale well.

It’s Real-time

Web platform features such as WebSockets and server-sent events permit
real-time functionality—such as instant data updates, live chat, multiplayer
games, and more. These can be difficult to implement in traditional server-
side languages, where they often require third-party services. Real-time
functionality in Node.js is significantly easier.

It’s Lightweight

The Node.js runtime is small and cross-platform. As well as catering for Linux,
macOS, and Windows, you find editions for embedded systems, the
Raspberry Pi, and even SpaceX rockets.

It’s Modular

Node offers a minimal standard library with good documentation. It contains
basic functions for error handling, file system access, network operations, and
logging.

For everything else …

It’s Extendible

Node.js has the largest package registry in the world, with more than one
million modules. You’ll find pre-written code for task runners, loggers,
database connectors, image processors, code compilers, web servers, API
managers, and even client-side libraries.

The npm command-line tool is provided with Node.js and makes it easy to
install, update, and remove modules. You can also use it to install global
modules so Node.js scripts can run as commands from anywhere on your
system.

5 Node.js: Novice to Ninja

https://developer.mozilla.org/Web/API/WebSockets_API
https://developer.mozilla.org/Web/API/Server-sent_events
https://nodejs.org/api/

It’s Open Source

Node.js is an open-source project. The runtime is free to use without any
commercial restrictions. The majority of modules are also free, because
they’re submitted by the community for the benefit of other developers.

It’s Everywhere

This course concentrates on web applications, but you can use Node.js to
create serverless functions, deployment scripts, cross-platform command-
line tools, and even complex graphical apps such as VS Code, Slack, and
Skype—all of which use the Electron framework.

As a web developer, you’ll almost certainly encounter Node.js, even if it’s not a
core part of your technology stack. Knowing a little Node.js could help your
projects and career. You’ll have a better insight into the possibilities available
to modern web applications.

What About Deno?

Node.js is a cross-platform, V8-based JavaScript runtime released

by Ryan Dahl in 2009.

Deno is a cross-platform, V8-based JavaScript runtime released by

Ryan Dahl in 2020.

Deno smooths over some cracks and inconsistencies of Node.js,

with the bene?t of a decade’s worth of hindsight. It directly

supports TypeScript without a compiler, uses ES6 modules rather

than CommonJS, replicates many browser APIs (window ,

addEventListener , Fetch , Web Workers, etc.), and provides built-

in tools for linting, testing, and bundling.

Deno is great—but it’s new, and yet to achieve a fraction of Node’s

popularity. The frameworks are similar: if you know one, it’s easy to

switch to the other.

What is Node.js? 6

https://www.electronjs.org/
https://deno.land/

Summary

In this chapter, you’ve learned that Node.js is a popular JavaScript runtime
that’s uniquely suited to web development. I’ve summarized it in this chapter’s
video. Chapter 2 describes how to install Node.js on your platform of choice.

Quiz

Many chapters in this course end with a quick quiz to ensure you’ve grasped
the concepts. Beware! Some questions are designed to catch you out, so
make sure you’ve been paying attention! Answers can be found in Appendix A,
at the back of the book.

1. What is Node.js?

a. A JavaScript runtime.
b. A tool for creating command-line, GUI, and web applications.
c. A cross-platform programming framework.
d. All of the above.

2. What is JavaScript’s relationship to Java?

a. JavaScript is a cut-down version of Java.
b. JavaScript is a cross-platform version of Java.
c. JavaScript is Java that runs in a web browser.
d. JavaScript is a marketing name.

3. What is not another name for JavaScript?

a. ECMAScript
b. TypeScript
c. JScript
d. ES2015

4. What best describes the Node.js non-blocking, event-driven I/O?

7 Node.js: Novice to Ninja

https://vimeo.com/707851157/54ff5cc8b6
https://vimeo.com/707851157/54ff5cc8b6

a. Code that runs in separate processing threads.
b. Code that runs synchronously; the next command runs after the current
command has completed.
c. Code that runs asynchronously; the next command could run before the
current command has completed.
d. Code that runs in parallel with other processes.

5. What is npm short for?

a. Node Package Manager
b. Node Program Maintenance
c. Node Parsing Methods
d. Node.js Perfect Manual

What is Node.js? 8

Install
Node.js

Chapter

2

9 Node.js: Novice to Ninja

You won’t get far on your Node.js journey without installing the runtime first!
You have three primary options:

Install Node.js on your local development machine running Linux, macOS,
or Windows.

This is the easiest choice, and the best way to get started—and it’s the
option we’ll be taking here.

Install Node.js via a virtual machine (typically Linux) running on Hypervisor
software such as VMware, VirtualBox, Parallels, or Hyper-V.

This won’t affect your main OS, so you can experiment without risk.

Windows users should also consider the Windows Subsystem for Linux 2
(WSL2), which offers a highly integrated Linux environment. Follow the
Linux instructions accordingly (found below in the “How to Install Node.js
on Linux (or Windows WSL2)” section).

Containerization software such as Docker.

Docker provides a wrapper around applications known as a container.
You’ll use Docker in later chapters to install software such as databases,
but you can also develop, debug, and deploy Node.js apps in a similar way.

A configured container runs identically on every OS, so it’s ideal when
working in teams where members have different devices.

Node.js apps will work cross-platform, but there are differences in file systems
and supported software. Web applications are typically deployed to a Linux
server, so developing on a Linux OS, virtual machine, or Docker container can
help to avoid compatibility issues.

Install Node.js 10

https://www.vmware.com/
https://www.virtualbox.org/
https://www.parallels.com/
https://docs.microsoft.com/virtualization/
https://www.sitepoint.com/wsl2/
https://www.sitepoint.com/wsl2/
https://www.docker.com/

Choosing a Node.js Version

Install a recent release of Node.js unless you’re supporting a legacy
application with specific requirements.

Even-numbered Node.js versions—such as 16, 18, and 20—focus on stability
and security with long-term support (LTS). Updates are provided for at least
two years, so I recommend them for live production servers. You should install
an identical version on your development machine.

Odd-numbered versions—such as 15, 17, 19—are under active development
and may have experimental features. They’re fine for development if you’re
learning, experimenting, or upgrading frequently.

Node.js 16 was used to develop the example code in this course. However,
Node.js generally has good backward compatibility, and applications written in
earlier editions of the framework usually run in later versions.

How to Install Node.js on Linux (or Windows

WSL2)

Open the nodejs.org home page in your browser and you’ll be directed to
download an installation package appropriate for your OS. However, it’s most
practical to use the package manager built into your OS. Ubuntu and Debian
binaries are available from NodeSource and, using version 16.x as an example,
you can install Node.js from an Ubuntu bash terminal like so:

Node Version Manager

Node Version Manager (nvm) is a tool that allows multiple editions

of Node.js to be installed on the same Linux, macOS, or Windows

WSL system. This can be practical if you’re working on two or more

projects using different versions of Node.js.

11 Node.js: Novice to Ninja

https://github.com/nvm-sh/nvm
https://nodejs.org/
https://nodejs.org/en/download/package-manager/
https://github.com/nodesource/distributions/blob/master/README.md

curl -fsSL https://deb.nodesource.com/setup_16.x | sudo -E bash -
sudo apt-get install -y nodejs

Verify that Node.js and npm are installed correctly by running the following
commands in the terminal to view their version numbers:

node -v
npm -v

2-1. Node and npm versions

Con!guring npm Global Permissions on Linux

The Node Package Manager command-line tool is provided with Node.js and
makes it easy to install, update, and remove modules. Where practical, Node.js
apps can be installed globally and run from anywhere—such as the Rollup
bundler for optimizing client-side JavaScript:

npm install rollup --global

This command results in a EACCES permission error , because you’re not
running as a superuser or using sudo . However, sudo grants unlimited

Install Node.js 12

https://rollupjs.org/

permissions to global scripts. I’d rather not run my own code that way, let
alone someone else’s!

A better option is to change the default npm directory to one owned by you.
Create a new directory for global modules, then configure npm, like so:

mkdir ~/.npm-global
npm config set prefix '~/.npm-global'

Then, open ~/.bashrc or ~/.profile in an editor such as nano :

nano ~/.bashrc

Next, add the following lines to the end of the file:

export NPM_GLOBAL="$HOME/.npm-global"
export PATH="$NPM_GLOBAL/bin:$PATH"

Restart the Bash terminal or update the system manually with source

~/.bashrc .

You can now install global modules without sudo —including updates to npm
itself:

npm install npm --global

How to Install Node.js on macOS

Open the nodejs.org home page in your browser and you’ll be directed to
download the Node.js .pkg installer for macOS. Launch the file, agree to the
terms, and continue the installation.

Verify that Node.js and npm are installed correctly by running the following
commands in the terminal to view their version numbers:

13 Node.js: Novice to Ninja

https://docs.npmjs.com/resolving-eacces-permissions-errors-when-installing-packages-globally
https://nodejs.org/

node -v
npm -v

How to Install Node.js on Windows

You can perform a Windows installation of Node.js in three ways:

on Windows directly
on a Linux distro installed in WSL2 (refer to the “How to Install Node.js on
Linux (or Windows WSL2)” section above)
on both Windows and Linux!

To install on Windows, open the nodejs.org home page in your browser and
you’ll be directed to download the Node.js .msi installer. Launch the file,
agree to the terms, and continue the installation.

Verify that Node.js and npm are installed correctly by running the following
commands in the terminal to view their version numbers:

node -v
npm -v

How to Install Node.js on Other Devices

If you’re using another device, chances are you’ll find a Node.js distribution
somewhere. It may not be on the standard nodejs.org website, so try Googling
“install Node.js on [my-device’s-name]”.

For example, searching for “Install Node.js on Raspberry Pi” provides many
resources for installing Node.js on different editions of the hardware.

Run JavaScript Commands in the Node.js REPL

Node.js provides a read-evaluate-print loop (REPL) language environment. It

Install Node.js 14

https://nodejs.org/
https://nodejs.org/
https://gist.github.com/stonehippo/f4ef8446226101e8bed3e07a58ea512a
https://gist.github.com/stonehippo/f4ef8446226101e8bed3e07a58ea512a

will be familiar if you’ve ever opened a browser’s developer tools console, and
it’s useful for testing snippets of code.

Start the REPL from your terminal by entering node . You’ll see a prompt such
as this:

Welcome to Node.js v16.12.0.
Type ".help" for more information.
>

Enter a JavaScript command or expression at the > prompt. For example:

> const myname = 'World';

(Replace “World” with your own name in quotes.)

You’ll see undefined returned, because the expression doesn’t output
anything. Now enter the following, to see “Hello World” (or whatever name you
used):

> console.log(`Hello ${ myname }`);

Again, undefined is shown because console.log() outputs a string and
doesn’t return a value.

You can enter any JavaScript expression. It’s not necessary to wrap it in a
console.log() . For example:

$ node
Welcome to Node.js v16.12.0.
Type ".help" for more information.
> 2+2
4
> const myname = 'World'
undefined
> `Hello ${ myname }`

15 Node.js: Novice to Ninja

'Hello World'
>

Finally, press Ctrl | Cmd + D to exit the REPL console.

You’re unlikely to use the REPL environment on a daily basis, but it can be
useful for evaluating simple expressions before adding them to a script.

Summary

In this chapter, you’ve learned how to install Node.js on a variety of devices
and run JavaScript commands in the REPL console. I've summarized it in this
chapter's video. In the next chapter, you’ll write your first JavaScript-powered
console and web applications.

Quiz

1. Versions of Node.js are available for:

a. most Linux distributions
b. macOS
c. Microsoft Windows
d. all of the above

2. What is nvm used for?

a. It’s an alternative to the standard npm.
b. It can install and manage different versions of Node.js on one device.
c. It’s a module search system.
d. It’s a text editor specifically designed for JavaScript applications.

3. What is REPL short for?

a. read-evaluate-print loop
b. read-execute-print loop
c. run-evaluate-print loop

Install Node.js 16

https://vimeo.com/707851379/8058d096ad
https://vimeo.com/707851379/8058d096ad

d. read-execute-primary loop

17 Node.js: Novice to Ninja

Your First
Node.js

Application

Chapter

3

Your First Node.js Application 18

In this chapter, you’ll write, run, and debug your first Node.js programs. To keep
it simple, these won’t use any third-party modules or npm. They’re self-
contained scripts that use the standard library provided in Node.js.

Your First Console App

Command-line console applications can be useful for automating tasks,
formatting data, manipulating files, or any other laborious job that’s best
handled by a computer.

Create a directory for your project, such as console :

mkdir console
cd console

Then add a file named hello.js with the following content:

#!/usr/bin/env node

// output message
console.log('Hello World!');

Save and run it from the command line:

node hello.js

You should now see Hello World! .

19 Node.js: Novice to Ninja

https://nodejs.org/api/

3-1. Hello World! in the console

Your First Node.js Application 20

To make the script more useful, you could pass a name on the command line.
The process.argv property in the standard library returns an array containing
the command-line arguments:

the first (element 0) is the node command itself
the second (element 1) is the script you’re running (hello.js)
the third (element 2) is the first argument passed

#!/What?

The ?rst line in hello.js — #!/usr/bin/env node —is known as a

shebang or hashbang. It’s entirely optional and ignored when you

run node hello.js , because you’re passing the script to the

Node.js runtime which executes the code.

However, the shebang can be useful in Linux and macOS because it

speci?es which runtime to use—in this case, node . You can run the

script using ./hello.js alone but, before you can do that, you

must permit direct execution by entering the following OS

command in your terminal:

chmod +x ./hello.js

From then on you can run the script from the command line using

this:

./hello.js

The OS analyses the shebang and runs the code using Node.js. It’s

not necessary to enter the full node hello.js command, although

that will continue to work.

This is beyond the scope of Node.js and we won’t use it again,

because npm provides some cross-platform options. It’s there

should you need it.

21 Node.js: Novice to Ninja

https://nodejs.org/api/process.html

Edit your hello.js script to extract the second argument and output it in the
console.log() statement:

#!/usr/bin/env node

// fetch name from command or fallback
const nameArg = (process.argv[2] || 'world');

// output message
console.log(`Hello ${ nameArg }!`);

Save this, then run node hello.js Craig to see Hello Craig! .

3-2. Hello Craig! in the console

If you omit the parameter (node hello.js), the app falls back to Hello world .

Your First Node.js Application 22

3-3. Hello world! is shown in the console

The fallback text of “world” is a little boring, so you could fetch the user’s name
stored in the OS’s environment variables. The process.env property returns an
object containing environment variable name/value pairs. Try entering
process.env in the REPL. (See the section “Run JavaScript Commands in the

Node.js REPL” in Chapter 2 for more on this.)

Linux and macOS devices define a USER variable, while Windows sets
USERNAME . Ensure your script is cross-platform by examining both when

declaring nameArg :

// fetch name from command argument, environment, or fallback
const nameArg = (process.argv[2] || process.env.USER || process.env.USERNAME ||
➥ 'world');

Run the script with node hello.js and you’ll see Hello <yourname> . You can
still override your OS name by passing a parameter such as node hello.js

Craig .

You can add a finishing touch to your console app by capitalizing the initial
letter of any name. Here’s the final script:

23 Node.js: Novice to Ninja

https://nodejs.org/api/process.html#process_process_env

#!/usr/bin/env node

// fetch name from command argument, environment, or fallback
const nameArg = capitalize(process.argv[2] || process.env.USER ||
➥process.env.USERNAME || 'world');

// output message
console.log(`Hello ${ nameArg }!`);

// capitalize the first letter of all words
function capitalize(str) {

return str
.trim()
.toLowerCase()
.split(' ')
.map(word => word.charAt(0).toUpperCase() + word.slice(1))
.join(' ');

}

Run the script with this:

node hello.js "from my node.js script"

You’ll now see Hello From My Node.js Script! .

Your First Node.js Application 24

3-4. The hello response in the console

You can see a video demonstration of this in action here.

Your First Web Server App

Web applications require a web server to return HTML web pages when
they’re requested by a browser. The browser may then request other assets
such as CSS stylesheets, client-side JavaScript, images, and Ajax-powered
APIs.

Dedicated web servers such as Apache and NGINX are often used for this
task. If Apache receives a request for a PHP file, it passes the content to the
PHP interpreter, which runs the code. Apache receives the resulting output
and returns it to the user’s browser. PHP developers often access Apache
server variables or tweak permissions to enhance their code.

25 Node.js: Novice to Ninja

https://vimeo.com/707851527/a5abf8497a

3-5. Apache/PHP web server

Node.js takes a different approach: your JavaScript application is a web server.
This sounds as though it’s complex to code, but the HTTP and HTTPS
standard libraries do much of the work for you.

3-6. Node.js web server

Create a directory for your project, such as server :

mkdir server
cd server

Then add a file named webhello.js with the following content:

Your First Node.js Application 26

https://nodejs.org/api/http.html
https://nodejs.org/api/https.html

#!/usr/bin/env node

const
port = (process.argv[2] || process.env.PORT || 3000),
http = require('http');

http.createServer((req, res) => {

console.log(req.url);

res.statusCode = 200;
res.setHeader('Content-Type', 'text/html');
res.end(`<p>Hello World!</p>`);

}).listen(port);

console.log(`Server running at http://localhost:${ port }/`);

Run it with node webhello.js and you’ll see Server running at

http://localhost:3000/ or similar. Open that address in your web browser to
view a web page with a “Hello World!” paragraph.

27 Node.js: Novice to Ninja

3-7. webhello.js

The code does the following:

It defines a variable for the server’s port . This can be passed on the
command line, a PORT environment variable, or it falls back to 3000 .
It uses the HTTP createServer library to create a web server which listens
on that port . When its callback function receives a request, it can
examine the details in the req object and return a response using the
res object.

This is a simple example, and the server returns the same “Hello World!”
response regardless of the URL. Try accessing http://localhost:3000/ ,
http://localhost:3000/abc/ , or http://localhost:3000/abc/123/ : every

page is the same.

Your First Node.js Application 28

https://nodejs.org/api/http.html#http_http_createserver_options_requestlistener

Let’s improve the application by saying “hello” to a string passed on the URL.
The URL is available in req.url , so you can strip any non-word characters and
capitalize as before. Update the script to this:

#!/usr/bin/env node

const
port = (process.argv[2] || process.env.PORT || 3000),
http = require('http');

http.createServer((req, res) => {

console.log(req.url);
const nameArg = capitalize(req.url.replace(/[^\w.,-]/g, ' ').replace
➥(/\s+/g, ' ').trim() || 'world');

res.statusCode = 200;
res.setHeader('Content-Type', 'text/html');
res.end(`<p>Hello ${ nameArg }!</p>`);

Port 3000?

Web servers listen for HTTP requests on port 80 and HTTPS

requests on port 443. You can set a different port, but you must

specify it on the URL.

Using the standard ports has drawbacks:

They may be in use by other software, such as other web servers or
Skype.
Linux and macOS block apps listening on ports below 1000 unless
they’re launched by a superuser. This grants your script unlimited
rights, where it could do anything such as wiping your OS or posting
passwords to Twitter. Remember, you’re running your code as well as
hidden code inside Node.js and any modules you’ve installed.

It’s safer to run web applications with standard permissions on a

higher port. Live production servers can use a web server such as

NGINX to forward requests to Node.js.

29 Node.js: Novice to Ninja

}).listen(port);

console.log(`Server running at http://localhost:${ port }/`);

// capitalize the first letter of all words
function capitalize(str) {

return str
.trim()
.toLowerCase()
.split(' ')
.map(word => word.charAt(0).toUpperCase() + word.slice(1))
.join(' ');

}

Now open http://localhost:3000/from/Node.js in your browser. Chances are
that you’ll see “Hello World!”, because your previous application instance is
still running!

Switch to the terminal and press Ctrl | Cmd + C to stop the application. Restart

it with node webhello.js , return to your browser, and refresh the page to see
“Hello From Node.js!”

Your First Node.js Application 30

3-8. The result of webhello.js in the browser

Experiment with different URL paths and analyze the nameArg declaration to
understand how it works.

Switch back to the Node.js terminal after you’ve tried a few URLs. It’s logging
each request, and you’ll see something like this:

$ node webhello.js
Server running at http://localhost:3000/
/from/Node.js
/favicon.ico
/craig
/favicon.ico

What are those unexpected /favicon.ico requests? You’ll investigate further
and debug in the next chapter.

31 Node.js: Novice to Ninja

Restarting Node.js Applications with Nodemon

You must restart a running Node.js application every time you make a change.
Pressing Ctrl | Cmd + C and launching again will quickly become tiresome.

Nodemon is a utility that monitors your source files for changes and
automatically restarts the application. Install it globally with npm:

npm install -g nodemon

You can now use nodemon in place of node to launch any Node.js application.
For example:

nodemon webhello.js

(You can pass any arguments as before.)

When you save a code change, Nodemon restarts the application and you’ll
see a log entry in the terminal:

[nodemon] restarting due to changes...
[nodemon] starting `node webhello.js`

If it doesn’t work, try running nodemon with the --legacy-watch / -L

argument:

nodemon -L webhello.js

Refer to the Nodemon documentation for more options.

Your First Node.js Application 32

https://nodemon.io/
https://github.com/remy/nodemon

You can find a video demonstration of the web application in action here.

Web Application Considerations

It’s astonishing that this lightweight script implements a functional web
server. The app is permanently on, and it can retain its own state regardless of
the number of users. For example, it could establish a database connection
once at start-up, then reuse that same connection on every request. Apache/
PHP environments are usually stateless, so every page request must load
configuration parameters and connect to a database before running a query.

However, Node.js applications run on a single processing thread:

If your app fails, it fails for everyone and won’t restart unless you have
appropriate monitoring in place. Options including PM2 and forever can
help.
If a single user triggers a long-running JavaScript function that takes ten
seconds to complete, every user accessing at that time will be waiting at
least ten seconds for a response. Asynchronous code solves the problem,
but it takes time to understand the concepts.

Executing Scripts from Windows Powershell

By default, Windows Powershell won’t let you execute third-party

scripts such as nodemon . Enter this command in a Powershell

window to permit script execution:

Set-ExecutionPolicy RemoteSigned -Scope CurrentUser

Complexity Ahead

This section covers some advanced topics. Don’t worry if it doesn’t

make sense now. We’ll revisit the information later.

33 Node.js: Novice to Ninja

https://vimeo.com/707851682/165b441f04
https://pm2.keymetrics.io/
https://www.npmjs.com/package/forever

Scaling an application can be difficult. Throwing more RAM or CPUs onto
an Apache/PHP server will improve response times. Node.js still runs on a
single CPU core even when that CPU has 15 more at its disposal. Solutions
such as clustering, PM2, and Docker containers can help by launching
multiple instances of the same application.

In addition, Node.js web servers are not efficient at serving static files such as
images, stylesheets, and client-side JavaScript. Production sites often use a
front-end NGINX web server to serve static files or direct the request to the
Node.js application when appropriate. This is known as a reverse proxy and it
has benefits, such as:

Static assets are served without any Node.js interaction. This avoids
unnecessary processing and improves performance.
Settings such as HTTPS certificates can be handled by NGINX rather than
Node.js. This is especially practical when you have more than one instance
of the same Node.js application running.
A Node.js app can run on a port above 1000, so it doesn’t need elevated
superuser permissions.

Your First Node.js Application 34

https://nodejs.org/api/cluster.html
https://pm2.keymetrics.io/

Summary

In this chapter, you’ve learned how to write simple console and web server
applications using Node.js libraries alone. You’ve also seen how nodemon can
automatically restart your app after updating code.

In the next chapter, you’ll discover options for debugging and fixing problems
in your Node.js code.

Write Stateless Applications

Suppose your single Node.js app kept count of the number of

logged-in users in single global variable named userCount .

What would happen if you wanted to improve performance by
launching two or more instances of the same app—perhaps on
other servers? Any instance could handle a user login. The

userCount value would be different—and wrong—on each running

instance of the app.

During development, you’ll often work on a single running instance.

However, I recommend you make it stateless to ensure it can scale

and be more resilient. Always presume:

multiple instances could be running anywhere, possibly on different
ports or servers
an instance can be started or stopped at any time
a frontend web server will direct a single user’s request to any
instance—regardless of which instance handled a previous request

In essence, avoid storing application or user state in variables or

local ?les that could differ across instances. Use a database to

retain state so every instance of the application can be

synchronized.

35 Node.js: Novice to Ninja

Quiz

1. Which of the following statements is true:

a. Node.js can only run web apps.
b. Node.js web apps require web server software such as NGINX to run.
c. Node.js web apps don’t require web server software, but NGINX or
similar can be beneficial on production sites.
d. Node.js isn’t suitable for running production web applications.

2. Which steps are necessary after modifying a Node.js app?

a. Use a tool such as nodemon to monitor for changes and restart the
application.
b. If it’s already running, stop the application with Ctrl | Cmd + C and restart

it.
c. Close the terminal, open a new one, and start the application again.
d. Any of the above.

3. Which Node.js object property returns command line arguments?

a. process.arg

b. process.argv

c. process.argument

d. process.env

4. Which Node.js object property returns environment variables?

a. process.env

b. process.envv

c. process.environment

d. process.arg

5. Can you launch multiple instances of the same Node.js app to improve
resilience and performance?

Your First Node.js Application 36

No. Only a single instance of a Node.js app can be launched at a time.
Yes, but each instance must be on a separate real or virtual server.
Yes, but containerization software such as Docker is essential.
Yes, but the application should be stateless and receive requests via a load
balancer or web server.

37 Node.js: Novice to Ninja

How to
Debug

Node.js
Scripts

Chapter

4

How to Debug Node.js Scripts 38

Tutorials often describe debugging in the final chapters. This can be
frustrating if you encounter a problem at the start of your coding
journey—which you will. Software development is complex.

If you’re lucky, your code will crash with an obvious error message. If you’re
unlucky, your application will carry on regardless but not generate the results
you expect. If you’re really unlucky, everything will work fine until the first user
to arrive discovers a catastrophic, disk-wiping bug.

What is Debugging?

Debugging is the black art of fixing software defects. Fixing a bug is often
easy; a corrected character or additional line of code solves the problem.
Finding that bug is another matter, and developers can spend many
frustrating hours locating the source of an issue. Fortunately, Node.js has
some great tools to help trace problems.

How to Avoid Bugs

You can often prevent bugs before you test your application. Let’s look at
some ways.

Use a Good Code Editor

A good code editor offers features such as:

line numbering to locate where an error occurred
type checking—for example, to ensure a number variable can’t have a

Skip Ahead?

This is a long chapter that describes several debugging options. You

can skip ahead to the “Exercise: Debugging webhello.js” section

(near the end of the chapter) if you’d like to get going. That said, a

little learning now could save hours of effort later!

39 Node.js: Novice to Ninja

string assigned
color-coding to catch syntax issues, such as invalid statements or missing
quotes
auto-completion of variable names, function names, properties, etc.
bracket matching to highlight problems in nested structures
auto-indentation that uses the correct tab or space characters
variable renaming across files and projects
snippet saving and reuse
parameter prompts for functions, properties, and methods
function navigation to jump to a declaration
unreachable code detection
refactoring tools to rearrange messy code

Node.js developers are spoiled for choice, with editors such as VS Code, Atom,
and Sublime Text.

Use a Code Linter

A linter reports faults such as syntax errors, poor indentation, undeclared
variables, mismatching brackets, and your own preferences (semicolons,
quote usage, etc.) before you save and test your code. Popular options for
JavaScript and Node.js include ESLint, JSLint, and JSHint.

These can be installed as global Node.js modules. For example, here’s how to
install ESLint globally using npm:

npm install eslint -g

You can then check files from the command line:

eslint myscript.js

How to Debug Node.js Scripts 40

https://code.visualstudio.com/
https://atom.io/
https://www.sublimetext.com/
https://eslint.org/
https://www.jslint.com/
https://jshint.com/

4-1. Using ESLint from the command line

However, most linters have code editor plugins, such as ESLint for VS Code
and linter-eslint for Atom, which check your code as you type.

41 Node.js: Novice to Ninja

https://marketplace.visualstudio.com/items?itemName=dbaeumer.vscode-eslint
https://atom.io/packages/linter-eslint

4-2. Using ESLint in VS Code

Use Source Control

A source control system such as Git can help safeguard your code and
manage revisions. It becomes easier to discover where and when a bug was
introduced and who should receive the blame! Online repositories such as
GitHub and Bitbucket offer free space and management tools.

Adopt an Issue-tracking System

Does a bug exist if no one knows about it? An issue-tracking system is used to
report bugs, find duplicates, document reproduction steps, determine
severity, calculate priorities, assign developers, record discussions, and track
progress of fixes.

Online source code repositories often offer basic issue tracking, but dedicated
solutions such as Jira, FogBugz, or Bugzilla may be appropriate for larger
teams and projects.

How to Debug Node.js Scripts 42

https://git-scm.com/
https://github.com/
https://bitbucket.org/
https://www.atlassian.com/software/jira
https://fogbugz.com/
https://www.bugzilla.org/

Use Test-driven Development

Test-driven development (TDD) is a development process that encourages
developers to write code to test the operation of a function before that
function is written—as in is X returned when function Y is passed input Z?

Tests are run as you develop code to prove the resulting function works as
expected. The same test can be rerun to spot issues as further changes are
made. Of course, your tests could have bugs too!

Further resources:

TDD overview at Wikipedia
“What is Test Driven Development”
“Master Test-driven Development in Node.js”

Node.js Debugging Environment Variables

Environment variables set within the host operating system control Node.js
application settings. The most common is NODE_ENV , which is typically set to
development when debugging or production on a live server.

Environment variables can be set on Linux/macOS:

NODE_ENV=development

This is the Windows Command Prompt:

set NODE_ENV=development

This is for Windows Powershell:

$env:NODE_ENV="development"

Internally, your own application can detect the setting and enable debugging

43 Node.js: Novice to Ninja

https://en.wikipedia.org/wiki/Test-driven_development
https://www.browserstack.com/guide/what-is-test-driven-development
https://www.sitepoint.com/premium/courses/master-test-driven-development-in-node-js-2932
https://nodejs.org/api/cli.html#environment-variables

messages when necessary. For example:

// running in development mode?
const DEVMODE = (process.env.NODE_ENV !== 'production');

if (DEVMODE) {
console.log('application started in development mode');

}

NODE_DEBUG enables debugging messages using the Node.js util.debuglog .
(See the “Node.js util.debuglog ” section below.) You should also consult the
documentation of your primary modules and frameworks to discover further
logging options.

Node.js Debugging Command-line Options

Various command-line options can be passed to the node or nodemon

runtime when launching an application. One of the most useful is --trace-

warnings , which outputs stack traces when promises don’t resolve or reject as
expected:

node --trace-warnings index.js

Other options include:

--enable-source-maps : enable source maps when using a transpiler such
as TypeScript
--throw-deprecation : throw errors when deprecated features are used
--inspect : activate the V8 inspector (see the “Node.js V8 Inspector”

section below)

Console Debugging

One of the easiest ways to debug an application is to output values to the
console during execution:

How to Debug Node.js Scripts 44

https://nodejs.org/api/cli.html

console.log(myVariable);

Few developers delve beyond the standard console.log() command, but
they’re missing out on many more possibilities:

Never Use console.log()?!

Some developers claim you should never use console.log() ,

because you’re changing code and there are better debugging

options. This is true—but everyone does it!

Use whatever tool makes you productive. Console logging can be a

quick and practical option. Finding a bug is more important than the

method you used to ?nd it.

45 Node.js: Novice to Ninja

https://nodejs.org/api/console.html

console method Description

.log(msg) output a message to the console

.log('%j', obj) output an object as a compact JSON string

.dir(obj,opt) uses util.inspect to pretty-print objects and
properties

.table(obj) outputs arrays of objects in tabular format

.error(msg) output an error message

.count(label) a named counter reporting the number of times the
line has been executed

.countReset[label] resets a named counter

.group(label) indents a group of log messages

.groupEnd(label) ends the indented group

.time(label) starts a timer to calculate the duration of an operation

.timeLog([label] reports the elapsed time since the timer started

.timeEnd(label) stops the timer and reports the total duration

.trace() outputs a stack trace (a list of all calling functions)

.clear() clear the console

console.log() accepts a list of comma-separated values. For example:

let x = 123;
console.log('x:', x);
// x: 123

However, ES6 destructuring offers similar output with less typing effort:

console.log({ x });
// { x: 123 }

util.inspect can format objects for easier reading, but console.dir() does

How to Debug Node.js Scripts 46

https://nodejs.org/api/console.html#console_console_log_data_args
https://nodejs.org/api/console.html#console_console_dir_obj_options
https://nodejs.org/api/util.html#utilinspectobject-options
https://nodejs.org/api/console.html#console_console_table_tabulardata_properties
https://nodejs.org/api/console.html#console_console_error_data_args
https://nodejs.org/api/console.html#console_console_count_label
https://nodejs.org/api/console.html#console_console_countreset_label
https://nodejs.org/api/console.html#console_console_group_label
https://nodejs.org/api/console.html#console_console_groupend
https://nodejs.org/api/console.html#console_console_time_label
https://nodejs.org/api/console.html#console_console_timelog_label_data
https://nodejs.org/api/console.html#console_console_timeend_label
https://nodejs.org/api/console.html#console_console_trace_message_args
https://nodejs.org/api/console.html#console_console_clear
https://www.sitepoint.com/es6-destructuring-assignment/
https://nodejs.org/api/util.html#utilinspectobject-options

the hard work for you:

console.dir(obj, { depth: null, color: true });

Node.js util.debuglog

The Node.js util module offers a built-in debuglog method that
conditionally writes log messages to STDERR :

const util = require('util');
const debuglog = util.debuglog('myapp');

debuglog('myapp debug message [%d]', 123);

When the NODE_DEBUG environment variable is set to myapp (or a wildcard
such as * or my*), debugging messages are displayed in the console:

MYAPP 9876: myapp debug message [123]

(9876 is the Node.js process ID.)

Debugging with Logging Modules

Third-party logging modules are available should you require more
sophisticated options for messaging levels, verbosity, sorting, file output,
profiling, reporting, and more. Popular solutions include:

cabin
loglevel
morgan (Express middleware)
pino
signale
storyboard
tracer
winston

47 Node.js: Novice to Ninja

https://nodejs.org/api/util.html#utildebuglogsection-callback
https://www.npmjs.com/package/cabin
https://www.npmjs.com/package/loglevel
https://www.npmjs.com/package/morgan
https://www.npmjs.com/package/pino
https://www.npmjs.com/package/signale
https://www.npmjs.com/package/storyboard
https://www.npmjs.com/package/tracer
https://www.npmjs.com/package/winston

Node.js V8 Inspector

The following sections use the webhello.js script developed in the previous
chapter to illustrate debugging concepts.

Node.js is a wrapper around the V8 JavaScript engine. V8 includes its own
inspector and debugging client. Use the inspect argument to start an
application (not to be confused with the --inspect flag—which is covered
below in the “Debugging Node.js Apps with Chrome” section):

node inspect webhello.js

The debugger pauses at the first line and displays a debug prompt:

$ node inspect webhello.js
< Debugger listening on ws://127.0.0.1:9229/8bf7669c-b3b4-43e6-9f96-3b40abbcb479
< For help, see: https://nodejs.org/en/docs/inspector
<
connecting to 127.0.0.1:9229 ... ok
< Debugger attached.
<
Break on start in webhello.js:4
2
3 const

> 4 port = (process.argv[2] || process.env.PORT || 3000),
5 http = require('http');
6

Enter help to view a list of commands. You can step through the application
with these options:

cont or c : continue execution
next or n : run the next command
step or s : step into a function being called
out or o : step out of a function and return to the calling command
pause : pause running code

How to Debug Node.js Scripts 48

https://nodejs.org/api/debugger.html

Other options include:

watching variable values with watch('myvar')

setting breakpoints with the setBreakpoint() / sb() command (although
it’s easier to insert a debugger; statement in your code)
restart a script
.exit the debugger (the initial . is required)

If this sounds horribly clunky, it is. Only use the built-in debugging client when
there’s absolutely no other option or you’re feeling masochistic.

Debugging Node.js Apps with Chrome

Start the Node.js V8 inspector with the --inspect flag:

node --inspect webhello.js

(nodemon can be run instead of node if necessary.)

This starts the debugger listening on 127.0.0.1:9229 , which any local
debugging client can attach to:

Debugger listening on ws://127.0.0.1:9229/20ac75ae-90c5-4db6-af6b-d9d74592572f

If you’re running the Node.js application on another device or Docker
container, ensure port 9229 is accessible and grant remote access using this:

node --inspect=0.0.0.0:9229 webhello.js

Alternatively, use --inspect-brk to halt processing the first statement so you
can step through the application line by line.

Open the Chrome browser and enter chrome://inspect in the address bar.

49 Node.js: Novice to Ninja

https://nodejs.org/api/debugger.html#debugger_watchers
https://nodejs.org/api/debugger.html#debugger_breakpoints

4-3. Using Chrome inspect

Click the Target’s inspect link to launch DevTools. This will be immediately
familiar to anyone who’s used browser developer tools.

In the Sources pane, click + Add folder to workspace, select where your
Node.js files are located, and hit Agree. Open webhello.js in the left-hand
pane or by pressing Ctrl | Cmd + P.

Not Using Chrome?

Chromium, Edge, Opera, Vivaldi, and Brave all have the same

debugger as Chrome. The chrome://inspect address should work

identically.

Remote Target

If the Node.js application doesn’t appear as a Remote Target,

ensure Discover network targets is checked, then click Configure
to add the IP address and port of the device where the application

is running.

How to Debug Node.js Scripts 50

4-4. Chrome DevTools

Click any line number to set a breakpoint denoted by a blue marker. A
breakpoint specifies where the debugger should pause processing so you can
inspect the state of the program. You can define any number of breakpoints.

Refresh/open http://localhost:3000/ in your browser and code execution
stops when that breakpoint is reached.

Debugger Statement

Processing also halts at any debugger statement in your code

when it runs using the V8 inspector. This may be practical when

sharing code or debugging across multiple devices, although you

may want to remove those commands before committing the code

to source control or releasing on a live server.

51 Node.js: Novice to Ninja

http://localhost:3000/

4-5. Chrome DevTools breakpoint

The right-hand panels include:

a Watch pane, which allows you to monitor variables by clicking the + icon
and entering their name
a Breakpoints pane, which shows a list of all breakpoints and allows them
to be enabled or disabled
a Scope pane, which shows the state of all available local and global
variables
a Call Stack pane, which shows the functions that were called to reach this
point

The row of icons above the Paused on breakpoint message is pictured below.

4-6. Chrome breakpoint icons

These options perform the following actions (from left to right):

How to Debug Node.js Scripts 52

1

2

3

4

5

6

7

resume execution: continue processing until the next breakpoint

step over: execute the next command but stay within the current

function; don’t jump into any function it calls

step into: execute the next command and jump into any function it calls

step out: continue processing to the end of the function and return to

the calling command

step: similar to step into, except it won’t jump into async functions

deactivate all breakpoints

pause on exceptions: halt processing whenever an error occurs

You can find a video demonstration of debugging with Chrome here.

Debugging Node.js Apps with VS Code

Node.js debugging in VS Code requires no configuration when you run a
Node.js application on your local system. Open the starting file (use
webhello.js here), activate the Run and Debug pane, click the Run and

Debug Node.js button, and choose the Node.js environment.

53 Node.js: Novice to Ninja

https://vimeo.com/707851882/991fa1f38f

4-7. The VS Code debugger

The debugging screen is similar to the DevTools screen, with a Variables,
Watch, Call stack, Loaded scripts, and Breakpoints list. Set a breakpoint by
clicking the left-hand gutter next to the line number. A red dot icon appears.
Refresh http://localhost:3000/ in your browser and execution will halt on the
breakpoint line so you can examine the program state.

How to Debug Node.js Scripts 54

http://localhost:3000/

4-8. A VS Code breakpoint

The icons in the debugging toolbar at the top are used to resume execution,
step over, step into, step out, restart, or stop the application. Identical options
are available from the Run menu.

You can also right-click a line number.

4-9. VS Code breakpoint options

Once you’ve done that, you can set the following:

55 Node.js: Novice to Ninja

A standard breakpoint.
A conditional breakpoint that halts the program when criteria are
met—such as count > 3 .
A logpoint. This is effectively console.log() without code! Enter any
string with evaluated expressions in curly braces. For example, URL: {

req.url } outputs the value of the req.url property.

4-10. A VS Code logpoint

The DEBUG CONSOLE displays the logpoint value when the web page is
refreshed.

4-11. VS Code logpoint output

For more information, refer to “Debugging in Visual Studio Code”.

Advanced Debugging Con!guration

VS Code configuration is necessary when you’re debugging code on another
device, a virtual machine, or you want to use different launch options. VS Code
stores launch configurations in a launch.json file inside a .vscode folder in
your project. To generate the file, click the create a launch.json file link at the

How to Debug Node.js Scripts 56

https://code.visualstudio.com/docs/introvideos/debugging

top of the Run and Debug pane and choose the Node.js environment.

4-12. VS Code launch configuration

You can add any number of configuration setting objects to the
"configurations": [] array. Click the Add Configuration button to add an

appropriate option. VS Code can either:

Launch a process using Node.js itself
Attach to a Node.js inspector process, perhaps running on a remote
machine or Docker container

The screenshot above shows a nodemon launch configuration. The Add
Configuration button provides a nodemon option; it’s only necessary to edit
the "program" property to point at ${workspaceFolder}/webhello.js .

Save launch.json , then select nodemon from the drop-down list at the top of
the Run and Debug pane, and click the green run icon.

57 Node.js: Novice to Ninja

4-13. VS Code launch

nodemon will launch your application. You can edit the code and set
breakpoints or logpoints as before.

For further information, refer to the VS Code launch configurations.

VS Code can debug any Node.js application, but the following extensions can
make life easier:

Remote - Containers: connect to apps running in Docker containers
Remote - WSL: connect to apps running on Linux in WSL on Windows

Other Node.js Debugging Tools

The Node.js Debugging Guide provides advice for other IDEs and editors
including Visual Studio, JetBrains, WebStorm, Gitpod, and Eclipse. Atom also
has a node-debug extension.

ndb offers an improved debugging experience with powerful features such as
attaching to child processes and script blackboxing so that only code in
specific folders is shown.

The IBM report-toolkit for Node.js works by analyzing data output when node

runs with an --experimental-report option.

Finally, commercial services such as LogRocket and Sentry.io integrate with
your live web application on both the client and the server to record errors as
they’re encountered by real users.

How to Debug Node.js Scripts 58

https://code.visualstudio.com/docs/editor/debugging#_launch-configurations
https://marketplace.visualstudio.com/items?itemName=ms-vscode-remote.remote-containers
https://marketplace.visualstudio.com/items?itemName=ms-vscode-remote.remote-wsl
https://nodejs.org/en/docs/guides/debugging-getting-started/
https://atom.io/packages/node-debug
https://github.com/GoogleChromeLabs/ndb
https://github.com/ibm/report-toolkit
https://logrocket.com/
https://sentry.io/

1

2

3

4

5

6

7

8

9

10

Exercise: Debugging webhello.js

The webhello.js code has a strange bug where an unexpected
/favicon.ico request is logged. To examine what’s happening, launch VS

Code and open the folder containing webhello.js . Then:

Switch to the Run and Debug pane.

Click create a launch.json file and choose the Node.js environment.

Click the Add Configuration button and choose Node.js: Nodemon

setup. (You’ll now have two objects inside the "configurations" array. You

can delete the second one.)

Change the "program" value to "${workspaceFolder}/webhello.js" .

Save the file and open webhello.js .

Click the + icon in the Watch pane and add the expression req.url .

Click the + icon in the Watch pane and add the expression nameArg .

Add a breakpoint to the line starting res.end by clicking to the left of

the line number. A red circle icon will appear.

Click the nodemon green start icon at the top of the Run and Debug

pane.

4-14. VS Code launch

The web application will start.

59 Node.js: Novice to Ninja

Now open http://localhost:3000/ in your browser and processing will halt at
the breakpoint. Assuming you haven’t used a different path on the URL, the
Watch pane will show:

req.url: `/`
nameArg: `World`

Click the Continue icon or press F5 to resume processing. At this point, the

browser will show “Hello World!”—but the breakpoint will trigger again.

4-15. VS Code breakpoint view

The Watch pane shows:

req.url: `/favicon.ico`
nameArg: `Favicon.ico`

(If this doesn’t happen, try a hard refresh in your browser—usually Ctrl + F5

on Windows and Linux or Cmd + R on macOS.)

How to Debug Node.js Scripts 60

http://localhost:3000/

When a browser makes its first request for a web page, it also requests a
favicon.ico image. This is the icon shown to the left of the page’s title in the

browser tab.

A web server would normally send an appropriate image or return an HTTP

404 Not found error. However, your Node.js application treats it like any other
request and returns the HTML text "Hello Favicon.ico" , which the browser
can’t use.

It’s not a catastrophic bug, but both the browser and server are doing
unnecessary work. Fix it by adding a check at the top of the createServer

callback function, which returns a 404 error:

http.createServer((req, res) => {

// abort favicon.ico request
if (req.url.includes('favicon.ico')) {
res.statusCode = 404;
res.end('Not found');
return;

}

Save webhello.js , and nodemon will restart the application. Try refreshing
your browser again and the breakpoint triggers just once.

To finish debugging, click the red square Stop icon in the debugging toolbar.

You can find a video demonstration of debugging with VS Code here.

Summary

This chapter has illustrated options for debugging Node.js applications. Use
whatever makes you productive, but I generally use console logging for quick
and dirty bug hunting and VS Code when things get complicated.

In the next chapter, you’ll start to write more complex Node.js code using npm
and third-party modules.

61 Node.js: Novice to Ninja

https://vimeo.com/707852019/3d44975aba

Debugging Terminology

Debugging has its own selection of obscure jargon. We’ve covered most
aspects throughout this chapter, but you could encounter terms like the ones
shown below.

How to Debug Node.js Scripts 62

Term Explanation

breakpoint a line at which a debugger halts a program so its state can
be inspected

breakpoint
(conditional)

a breakpoint triggered by a certain condition, such as a
value reaching 100. Also known as a watchpoint

debugger a tool that offers debugging facilities such as running code
line by line to inspect internal variable states

duplication a reported bug that has already been reported—perhaps in
a different way

feature as in the claim: “it’s not a bug, it’s a feature”. You’ll find
yourself saying this at some point

frequency how often a bug occurs

it doesn’t
work

the most-often made but least useful bug report

logpoint a debugger instruction that shows the value of an
expression during execution

logging output of runtime information to the console or a file

logic error the program works but doesn’t act as intended

priority where a bug is allocated on a list of planned updates

race
condition

hard-to-trace bugs dependent the sequence or timing of
uncontrollable events

refactoring rewriting code to help readability and maintenance

regression re-emergence of a previously fixed bug perhaps owing to
other updates

related a bug that’s similar or related to another

reproduce the steps required to cause the error

RTFM error user incompetence disguised as a bug report, typically
followed by a developer’s response that they should “Read

63 Node.js: Novice to Ninja

Term Explanation

The Friendly Manual”

step into when running code line by line in a debugger, step into the
function being called

step out when running line by line, complete execution of the
current function and return to the calling code

step over when running line by line, complete execution of a
command without stepping into a function it calls

severity the impact of a bug on system. For example, data loss
would normally be considered more problematic than a
one-pixel UI alignment issue unless the frequency of
occurrence is very low

stack trace the historical list of all functions called before the error
occurred

syntax error typographical errors, such as console.lug()

user error an error caused by a user rather than the application. This
may still incur an update, depending on the seniority of the
person who caused it!

watch a variable or expression output during debugger execution

Quiz

1. You can debug Node.js apps by:

a. using the command-line V8 inspector
b. attaching to the process using Chrome DevTools
c. using a suitable editor such as VS Code
d. all of the above

2. What command would be suitable for outputting the values contained in a
JavaScript object?

How to Debug Node.js Scripts 64

a. console.log('%j', obj)

b. console.table(obj)

c. console.dir(obj, { depth: null, color: true })

d. any of the above

3. A breakpoint is:

a. triggered by console.log()

b. a point at which processing halts during execution
c. a statement to stop the program, such as exit

d. the moment a developer chooses to stop work

4. A logpoint is:

a. used to show the value of an expression during execution
b. an alternative name for a breakpoint
c. a reference to a console.log() statement
d. a specific line in an output log

5. console.log() :

a. should never be used
b. should only be used when there’s no other option
c. should be used if it’ll help locate a bug
d. is impractical for debugging

65 Node.js: Novice to Ninja

Getting
Started with

Express

Chapter

5

Getting Started with Express 66

In this chapter, you’ll create a web server application that constructs and
returns simple web pages. It will help you become more familiar with:

npm (Node Package Manager)
ES6 modules
the Express framework
URL routing
HTML template engines

Why use Express?

You created a small web server application in Chapter 3. It’s fast, and it works
well, but a complex web application requires features such as URL routing,
query string parsing, posted data decoding, HTML templates, image serving,
and more. You could write this yourself, but much of that effort is already
implemented in Express.

Express is a Node.js web server framework that promotes itself as “fast,
unopinionated, and minimalist”. It allows you to concentrate on your
application’s business logic without having to worry too much about web
server technicalities such as URL routing, parsing data, setting HTTP headers,
and so on.

Various web server frameworks are available in the Node.js ecosystem,
including Fastify, Koa, and Hapi. These may be more recent, more regularly
maintained, faster, and a better fit for your application. However, Express was
one of the first web frameworks and influenced all that followed. It’s stable,
easy to use, and remains popular, with 18 million downloads per week. You’re
more likely to encounter Express than another framework.

Express Version

At the time of writing, Express 4 is the active recommended release

and Express 5 is in alpha. All the examples below should work in

either, but switch to version 4 if you have problems.

67 Node.js: Novice to Ninja

https://expressjs.com/
https://www.fastify.io/
https://koajs.com/
https://hapi.dev/

Create a New Node.js Project

Create and access a project directory for your new application. A name such
as express is fine:

mkdir express
cd express

Run npm init to initialize a new Node.js project. npm will prompt you for
values, but you can hit Enter to accept the defaults.

Create a New Git Repository

For real projects, I recommend creating a new Git repository and

cloning it accordingly. This is easier than attempting to Git-ify a

partially written project later.

Getting Started with Express 68

5-1. Initializing a new Node.js project

npm saves the settings to a new package.json file in your project’s root
directory:

{
"name": "express",

69 Node.js: Novice to Ninja

"version": "1.0.0",
"description": "Example Express app",
"main": "index.js",
"scripts": {
"test": "echo \"Error: no test specified\" && exit 1"

},
"author": "Craig Buckler",
"license": "MIT"

}

package.json provides a single place to configure your application. It contains
the name , the version , the main entry/starting script, useful application
scripts , configuration data, and module dependencies.

Switch to ES6 Modules

Ensure your project uses standard ES6 modules by adding "type":

"module", to package.json in your editor (it can go anywhere in the root
object, but is placed above "main" here):

{
"name": "express",
"version": "1.0.0",
"description": "Example Express app",

Semantic Versioning

Most Node.js projects use semantic versioning, with three

MAJOR.MINOR.PATCH numbers such as 1.2.33 . When a change

occurs, you increment the appropriate number and zero those that

follow:

MAJOR for major updates with incompatible API changes

MINOR for new functionality that doesn’t affect backwards

compatibility
PATCH for bug fixes

Getting Started with Express 70

https://semver.org/

"type": "module",
"main": "index.js",
"scripts": {
"test": "echo \"Error: no test specified\" && exit 1"

},
"author": "Craig Buckler",
"license": "MIT"

}

ES6 modules are identical to those used in web browsers. Node.js uses
CommonJS by default, but ES6 support arrived in version 13. ES6 modules will
become predominant over time, so we’ll use ES6 throughout this course.

Node can import CommonJS modules using ES6 syntax. It will also make
suggestions if there’s a potential issue or conflict. However, you may
encounter problems with some modules written in CommonJS syntax,
especially if they haven’t been updated for a few years.

Install Express

Install Express from your project directory using npm:

npm install express

5-2. Installing Express

71 Node.js: Novice to Ninja

After completion, your package.json file will have a new "dependencies"

object, which lists the modules required when your project runs. It contains a
reference to "express" and its latest version number (the leading ^ means
Express can upgrade to a compatible version such as 4.17.2 or 4.18.0 but
not 5.0.0):

{
"name": "express",
"version": "1.0.0",
"description": "Example Express app",
"type": "module",
"main": "index.js",
"scripts": {
"test": "echo \"Error: no test specified\" && exit 1"

},
"author": "Craig Buckler",
"license": "MIT",
"dependencies": {
"express": "^4.17.1"

}
}

You’ll also find the following:

a new package-lock.json file for npm internal use, which lists all the
installed modules
a new node_modules folder, which contains the Express module and all
submodules code (around 2MB of files)

Getting Started with Express 72

Create the Express Entry Script

You can now write code that uses Express to create a web application. Add a
new index.js file in the project directory with the following code:

// Express application
import express from 'express';

// configuration
const
cfg = {
port: process.env.PORT || 3000

Runtime Dependencies and Development Dependencies

A module such as Express is required for your application to run. It’s

a dependency.

You can also install development dependencies, which are typically

build tools that are only required on your development PC.

Examples include JavaScript bundlers such as Rollup, CSS

preprocessors such as Sass, and live reload systems such as

Browsersync.

npm presumes a module is a runtime dependency unless you add

the --save-dev switch during installation. For example:

npm install browser-sync --save-dev

This installs Browsersync, but references it in a "devDependencies"

object in package.json . Running npm install on a production

server where the NODE_ENV environment variable is set to

production would not install Browsersync.

The distinction between a dependency and a development

dependency is not always straightforward. For example, you could

run Rollup on a production server to create mini?ed JavaScript ?les.

73 Node.js: Novice to Ninja

https://rollupjs.org/
https://sass-lang.com/
https://browsersync.io/
https://rollupjs.org/

};

// Express initiation
const app = express();

// home page route
app.get('/', (req, res) => {
res.send('Hello World!');

});

// start server
app.listen(cfg.port, () => {
console.log(`Example app listening at http://localhost:${ cfg.port }`);

});

To make starting this app a little easier, edit package.json and change the
"scripts" object to this:

"scripts": {
"start": "nodemon index.js"

},

If you don’t have nodemon installed, you can install it globally with npm

install nodemon -g . If you’d rather use node directly, use "node index.js"

as your "start" script (but you’ll need to stop and restart your app every time
you want to test a change).

Start the application with npm start and browse to http://localhost:3000.

Getting Started with Express 74

http://localhost:3000/

5-3. Express start

The script imports the express module and creates an instance named app .

A single routing function is defined to handle HTTP GET requests to the root
/ path:

// home page route
app.get('/', (req, res) => {

75 Node.js: Novice to Ninja

res.send('Hello World!');
});

A routing function is passed these two objects:

An Express HTTP Request object (req), which contains details about the
browser’s request.
An Express HTTP Response object (res), which provides methods used to
return a response to the browser. It sends “Hello, World!” text.

Try adding another routing function below the / handler to handle HTTP GET
requests to /hello/ :

// another route
app.get('/hello/', (req, res) => {
res.send('Hello again!');

});

Once the application has restarted, open http://localhost:3000/hello/ in your
browser to see a “Hello again!” message.

No other URL routes are defined. Entering a different URL path in the
browser—such as http://localhost:3000/abc—returns Cannot GET /abc .
Routing is a central part of Express, and the framework provides options for

What Is Routing?

Routing determines which functions Express executes when it

receives a request for a speci?c URL, such as / or /another/

path/ .

Ultimately, one function will return an HTTP response and terminate

further processing. The order of your routing functions is therefore

critical: a function won’t run if an earlier function completes the

request.

Getting Started with Express 76

https://expressjs.com/en/4x/api.html#req
https://expressjs.com/en/4x/api.html#res
http://localhost:3000/hello/
http://localhost:3000/abc
https://expressjs.com/en/4x/api.html#router

parsing and responding to different URLs.

The end of the script has an app.listen() call to start the Express server
listening on the defined port.

See the course code/ch05/express01 directory and associated video to run
the code created so far.

Should You Switch to HTTPS?

Probably not.

All the Node.js examples in this course respond to HTTP requests on port
3000 by default:

// start server
app.listen(cfg.port, () => {
console.log(`Example app listening at http://localhost:${ cfg.port }`);

});

HTTPS requires a Secure Socket Layer (SSL) certificate. These are issued by
certificate authorities for use on a specific domain to encrypt tamper-proof
data between the browser and server.

For local testing, developers often create their own self-signed certificates
using the command line or online tools.

If you have a private key file named server.key , and a site certificate named
server.crt , an Express app can read the SSL files, create an HTTPS server,

and pass the Express app object as a listener:

// start HTTPS server
import { createServer } from 'https';
import { readFileSync } from 'fs';

createServer(

77 Node.js: Novice to Ninja

https://github.com/spbooks/ultimatenode1/tree/main/ch05/express01
https://vimeo.com/707852179/3a792263ec
https://linuxize.com/post/creating-a-self-signed-ssl-certificate/
https://www.selfsignedcertificate.com/
https://nodejs.org/dist/latest/docs/api/fs.html#fsreadfilesyncpath-options
https://nodejs.org/dist/latest/docs/api/https.html#httpscreateserveroptions-requestlistener

{
key: fs.readFileSync('./server.key'),
cert: fs.readFileSync('./server.crt')

},
app

).listen(cfg.port);

(This replaces the HTTP app.listen() code above.)

Your application will now accept requests to
https://localhost:3000/—although your browser will warn that the certificate
has not been issued by a recognized Authority.

Problems with this approach include the following:

You must manage different sets of certificates for production, staging, and
every development PC.
You still need an HTTP server to forward invalid HTTP requests to HTTPS.
There are subtle differences when using real and self-signed certificates.
For example, browsers don’t cache data from a self-signed server.
Applications could run fine locally but experience cache-related issues in
production.
The Node.js app must listen on port 443 when deployed to a production
server. It must be launched by a superuser (sudo node index.js), but this
grants the app permission to do anything. It could accidentally wipe all
system files!

A better approach is to use a web server such as NGINX as a reverse proxy. It
can handle SSL, HTTP requests, and static files, but forward all requests to the
Node.js app (over HTTP) when necessary. (See chapter 18 for deployment
options.)

Serve Static Files

Most web applications contain static files that return the same response to all
users. These could include images, favicons, CSS stylesheets, client-side

Getting Started with Express 78

https://localhost:3000/
https://www.nginx.com/

JavaScript, pre-rendered HTML pages, or any other asset.

It would be painful to programmatically assign routes for every file. Express
allows you to define a single directory that contains static assets and returns
any file that matches the URL path.

Create a directory named static in your project folder and add a file named
page.html with the following content:

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>Static page</title>
<meta name="viewport" content="width=device-width,initial-scale=1" />
</head>
<body>

<h1>This is a static page</h1>

</body>
</html>

Edit your index.js file and add the following code after the final app.get()

route:

// serve static assets
app.use(express.static('static'));

(The following “Express Middleware Functions” section explains this code.)

Save and restart the application, then open http://localhost:3000/page.html in
your browser.

79 Node.js: Novice to Ninja

http://localhost:3000/page.html

5-4. Our static page

Try adding pages, images, or other assets to the static directory or a
subdirectory within it. For example, an image at /static/images/myimage.png

can be viewed in the browser at http://localhost:3000/images/myimage.png .

Efficient Static Assets

In this example, Express only checks the ?le system for a matching

static asset when it can’t be handled by a routing function. However,

you could check for assets ?rst if your application mostly consists

of static ?les.

On production servers, it’s more ef?cient to use a frontend web

server such as NGINX to serve static assets and bypass Node.js

processing entirely.

Getting Started with Express 80

Express Middleware Functions

The app.use() method used above to define the static directory introduces
the concept of Express middleware. Middleware functions run in the
sequence defined in the code, and can typically:

run code on every request
manipulate or change the request and response objects
terminate a response—perhaps if the user isn’t logged in
call the next middleware function

In this case, express.static('static') returns a middleware function that
handles static directory processing.

All middleware functions receive three arguments:

req : the Express HTTP Request object.
res : the Express HTTP Response object.
next : a callback that passes control to the next middleware function.

Middleware functions must always call next() unless they complete or
terminate the current request.

The following middleware function logs every URL request to the terminal:

// log every request to the terminal
app.use((req, res, next) => {
console.log(req.url);
next();

});

You should place this function before any others that could end processing.
No logging would occur if you placed it after URL routing or static asset
middleware that succeeded in returning a response.

81 Node.js: Novice to Ninja

https://expressjs.com/en/4x/api.html#app.use
http://expressjs.com/en/guide/using-middleware.html
https://expressjs.com/en/4x/api.html#req
https://expressjs.com/en/4x/api.html#res

De2ne Working Directories

A hard-coded static directory is used above. That’s fine for Express, but
what if another module needed to locate the same directory to read or write a
file?

We can define a fully qualified reference to all working directories in the cfg

configuration object. This used to be easy in CommonJS (see Chapter 8 for
more on this topic) because Node provided a __dirname constant with the full
directory of the current module. The situation is more complex in ES6
modules, because they’re referenced by URL—not by file. The URL of the
current module is available in import.meta.url , so it can be parsed to a file
path using the standard Node.js library:

import { fileURLToPath } from 'url';
import { dirname, sep } from 'path';

const __dirname = dirname(fileURLToPath(import.meta.url)) + sep;

The url module provides a fileURLtoPath() function, which converts a
file:// URL to a fully qualified file path.

The path module provides a dirname() function to extract the directory
from a path and a sep constant with the platform-specific path separator (/
on POSIX, \ on Windows).

Update the top of index.js accordingly:

// Express application
import express from 'express';

import { fileURLToPath } from 'url';
import { dirname, sep } from 'path';

// configuration
const

Getting Started with Express 82

https://nodejs.org/dist/latest/docs/api/modules.html#__dirname
https://nodejs.org/dist/latest/docs/api/url.html
https://nodejs.org/dist/latest/docs/api/url.html#urlfileurltopathurl
https://nodejs.org/dist/latest/docs/api/path.html
https://nodejs.org/dist/latest/docs/api/path.html#pathdirnamepath
https://nodejs.org/dist/latest/docs/api/path.html#pathsep

__dirname = dirname(fileURLToPath(import.meta.url)) + sep,
cfg = {
port: process.env.PORT || 3000,
dir: {
root: __dirname,
static: __dirname + 'static' + sep

}
};

console.dir(cfg, { depth: null, color: true });

// Express initiation
// ...rest of code

Then change the reference to the hard-coded static directory:

// serve static assets
app.use(express.static(cfg.dir.static));

The application shows the configuration settings when starting, but the static
page at http://localhost:3000/page.html should work as before.

83 Node.js: Novice to Ninja

http://localhost:3000/page.html

5-5. Our Express directory configuration

Other modules can’t access the cfg object unless you export it. The active
app object can also be useful, so add the following code at the end of
index.js :

// export defaults
export { cfg, app };

Compressing HTTP Responses

To improve web application performance, you should compress assets before
they’re returned to the browser over the network. The compression

Getting Started with Express 84

https://www.npmjs.com/package/compression

middleware module can handle this for you. Stop your app, then install the
module:

npm install compression

The dependencies section of your package.json file updates accordingly:

"dependencies": {
"compression": "^1.7.4",
"express": "^4.17.1"

}

Load the module at the top of index.js :

// Express application
import express from 'express';
import compression from 'compression';

Then add it as one of the first middleware functions (before routers and static
file handlers):

// HTTP compression
app.use(compression());

It won’t make a noticeable difference to performance here, but addressing
performance at the start of a project puts you one step ahead of most teams!

Disable Express Identi2cation

By default, Express sets the following HTTP response header:

X-Powered-By: Express

It doesn’t do any harm, but you can disable it with app.disable() in
index.js :

85 Node.js: Novice to Ninja

https://www.npmjs.com/package/compression
http://expressjs.com/en/4x/api.html#app.disable

// Express initiation
const app = express();

// do not identify Express
app.disable('x-powered-by');

It will save a few bytes on every HTTP request, and will also give malicious
hackers less information about your Node.js technology stack.

Handle 404 Not Found Errors

Add the following code as the last middleware function to gracefully handle
errors when a page or asset can’t be found:

// 404 error
app.use((req, res) => {
res.status(404).send('Not found');

});

This returns a “Not Found” message with a 404 HTTP header code, but you
could also do one of the following options:

redirect to an appropriate page
show suggested pages to the user
log bad requests to a file for further analysis

See the course code/ch05/express02 directory and associated video to run
the code created so far.

Add an HTML Template Engine

Node.js has a wide range of HTML template engines that create HTML pages
or snippets for output. A typical engine will take an HTML template and:

substitute variables with actual values
allow the inclusion of partials such as headers, footers, menus, and so on
permit basic programming functionality, such as conditions and loops

Getting Started with Express 86

http://expressjs.com/en/5x/api.html#res.redirect
https://github.com/spbooks/ultimatenode1/tree/main/ch05/express02
https://vimeo.com/707852263/638c6e5c29

Popular templating options include Pug, Nunjucks, and EJS, which we’ll use
here, because it’s one of the simplest, fastest, and most popular options. Many
HTML template engines work with Express, but most provide instructions in
situations where there’s no direct support.

In this example, you’ll create a simple message.ejs template that’s used to
display single messages such as “Hello World!” in an <h1> tag. Stop your
server and install EJS with npm install ejs .

The dependencies section of your package.json file updates accordingly:

"dependencies": {
"compression": "^1.7.4",
"ejs": "^3.1.6",
"express": "^4.17.1"

}

Now create a views subdirectory in your project. Add a file to it named
message.ejs with the code to output a title variable:

<%- include('partials/_htmlhead'); -%>

<h1><%= title %></h1>

<%- include('partials/_htmlfoot'); -%>

This template includes other partials, so create a partials subdirectory in
views with a _htmlhead.ejs file:

Template Performance

Ideally, your HTML templates should do as little as possible at runtime. You
may be able to pre-render some parts of a template, such as including
other files (partials) so your app has less work to do when rendering a
page.

87 Node.js: Novice to Ninja

https://pugjs.org/
https://mozilla.github.io/nunjucks/
https://ejs.co/
https://expressjs.com/en/resources/template-engines.html

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title><%= title %></title>
<meta name="viewport" content="width=device-width,initial-scale=1" />
</head>
<body>

Also create an _htmlfoot.ejs file:

</body>
</html>

Open the Express entry index.js file and add a new cfg.dir.views property
that points at the views directory:

// configuration
const
__dirname = dirname(fileURLToPath(import.meta.url)) + sep,
cfg = {
port: process.env.PORT || 3000,
dir: {
root: __dirname,
static: __dirname + 'static' + sep,
views: __dirname + 'views' + sep

}
};

Add this code before any routes and middleware:

// use EJS templates
app.set('view engine', 'ejs');
app.set('views', cfg.dir.views);

This sets EJS as the Express view engine with files contained in the views

directory.

EJS is invoked using the Express Response render() method in a routing

Getting Started with Express 88

http://expressjs.com/en/4x/api.html#res.render

function. Update the functions / , /hello/ , and the 404 handler:

// home page route
app.get('/', (req, res) => {
res.render('message', { title: 'Hello World!' });

});

// another route
app.get('/hello/', (req, res) => {
res.render('message', { title: 'Hello again!' });

});

// serve static assets
app.use(express.static(cfg.dir.static));

// 404 errors
app.use((req, res) => {
res.status(404).render('message', { title: 'Not found' });

});

The render method is passed the name of the template ('message' —the
.ejs extension can be omitted) and an object containing name/value pairs. A
title is set in this example.

Start your Express server with npm start , then open http://localhost:3000/ in
a browser.

89 Node.js: Novice to Ninja

http://localhost:3000/

5-6. Express EJS rendering

The result may not be significantly different, but it’s a fully rendered HTML
page with an <h1> title. (View the source, Luke.)

Getting Started with Express 90

Advanced Routing

URL routing is at the heart of Express processing. You’ve developed simple
routes that run functions for specific matching URLs, but there are more
options:

path expressions: handling many routes with one function
path parameters: parsing routes to extract values
HTTP methods: using GET, POST, DELETE, PUT and so on
route handlers: grouping related route handler functions into one file

Routing Path Expressions

Simple URL routes are defined in the examples above. For example:

// another route
app.get('/hello/', (req, res) => {
res.send('Hello again!');

});

The route handles HTTP GET requests to /hello/ , although Express will do
the following:

Ignore casing. The paths /Hello/ and /HELLO/ will match the /hello/

route unless you add app.set('case sensitive routing', true) to
index.js .

Ignore closing slashes. The paths /hello/ and /hello match the same
route unless you add app.set('strict routing', true) to index.js .

As well as exact routes, you can define regular expression patterns to match a
range of URLs. For example:

? denotes that the preceding character is optional. A route of /ab?cd/

matches the URL paths /abcd/ and /acd/ .
+ denotes that the preceding character must appear one or more times. A

route of /ab+cd/ matches the URL paths /abcd/ , /abbcd/ , /abbbbbcd/

91 Node.js: Novice to Ninja

and so on.
* denotes any number of characters. A route of /ab*cd/ matches the

URL paths /abcd/ , /ab123cd/ , /ab-node.js-cd/ and so on.
A more complex route of /.+Script$/ matches the URL paths
/JavaScript/ and /ECMAScipt/ , but not /Scripting/ .

Express uses the Path-to-RegExp module to parse paths. The Express Route
Tester tool can help you build and debug more complex URLs.

Routing Path Parameters

Route parameters are named path segments preceded by a colon (:) to
identify a variable in the URL. For example, the route /user/:id matches any
URL path starting /user/ that has a single segment—such as /user/123 or
/user/abc .

Captured values are available in the Request params object, so
req.params.id would be set to 123 or abc in the examples above.

Any number of URL parameters can be defined. The following route function
would run for the path /author/Craig-Buckler/book/Node.js :

// return a value for a user
app.get('/author/:name/book/:bookName', (req, res, next) => {

console.log(`author: ${ req.params.name }`); // "Craig-Buckler"
console.log(` book: ${ req.params.bookName }`); // "Node.js"

next();

});

HTTP Route Methods

The examples above handle HTTP GET requests by defining an app.get()

function. Express supports all the other HTTP methods, including:

Getting Started with Express 92

https://www.npmjs.com/package/path-to-regexp
http://forbeslindesay.github.io/express-route-tester/
http://forbeslindesay.github.io/express-route-tester/
http://expressjs.com/en/4x/api.html#req.params
https://developer.mozilla.org/Web/HTTP/Methods

HTTP POST with app.post()

HTTP PUT with app.put()

HTTP DELETE with app.delete()

app.all() handles all HTTP methods to a specific route. The function can
examine the req.method property to determine which HTTP method was
used.

Creating a Route Handler

Defining all route handler functions in the entry index.js script becomes
impractical as your application grows in complexity. A better option is to
create route handling middleware in separate files with related functionality.

The following example updates the Express code so that requests to any URL
starting /hello/ are handled in a single router file. Two GET requests are
implemented:

/hello/:name returns a page saying hello to someone by name. For
example, /hello/craig displays “Hello Craig!”
/hello/:lang/:name returns a page saying hello to someone by name in a

specific language. For example, /hello/fr/craig switches to French and
displays “Bonjour Craig!”

Before doing this, create a lib subdirectory in your project folder for generic
library modules. Add a new file at lib/locale.js with the following code:

// localisation

// international greetings
export const hello = {
au: 'G\'day',
cn: 'Nǐ hǎo',
en: 'Hello',
de: 'Hallo',
es: 'Hola',

93 Node.js: Novice to Ninja

http://expressjs.com/en/4x/api.html#app.all

fr: 'Bonjour',
jp: 'Kon\'nichiwa'

};

Then add lib/string.js with the following code:

// string functions

// capitalize the first letter of all words
export function capitalize(str) {

return str
.trim()
.toLowerCase()
.split(' ')
.map(word => word.charAt(0).toUpperCase() + word.slice(1))
.join(' ');

}

Next, create a new routes subdirectory in your project folder for routing
middleware. Add a new file at routes/hello.js with code to define the two
routing functions:

// /hello/ route
import { Router } from 'express';
import { hello } from '../lib/locale.js';
import { capitalize } from '../lib/string.js';

export const helloRouter = Router();

// say hello in English
helloRouter.get('/:name', (req, res, next) => {

res.render(
'message',
{ title: `${ hello.en } ${ capitalize(req.params.name) }!` }

);

});

Getting Started with Express 94

// say hello in a specific language
helloRouter.get('/:lang/:name', (req, res, next) => {

res.render(
'message',
{ title: `${ hello[req.params.lang] || hello.en } ${ capitalize(req.params.
➥name) }!` }

);

});

This defines an Express Router object named helloRouter . Routers are mini
applications that can perform routing and middleware functions.

The first route defines a function for the parametrized path /:name . (You
should not specify the full /hello/:name route, because this router file will
become the handler for all /hello/ paths.) The function renders the message

template with a title that says “Hello” (in English) to the :name value
passed on the URL (req.params.name).

The second route defines a function for the parametrized path /:lang/:name .
Again, this renders the message template with a title that uses a localized
version of “Hello” as defined in lib/locale.js .

To use your Router file, open index.js then remove these lines:

// another route
app.get('/hello/', (req, res) => {
res.send('Hello again!');

});

Replace them with this code:

// /hello/ route
import { helloRouter } from './routes/hello.js';
app.use('/hello', helloRouter);

95 Node.js: Novice to Ninja

http://expressjs.com/en/4x/api.html#router

app.use() defines the helloRouter middleware rather than a single
app.get() route.

If necessary, restart your Express app with npm start and open a URL in your
browser, such as http://localhost:3000/hello/craig to see “Hello Craig!”

Getting Started with Express 96

5-7. Our hello route

Switch to an Australian greeting with the URL http://localhost:3000/hello/

97 Node.js: Novice to Ninja

au/craig .

5-8. Our hello route localized to Australia

Getting Started with Express 98

See the course code/ch05/express02 directory and associated video to run
the code created so far.

Exercises

Attempt the following updates to improve your Express coding experience:

Improve the message template to add a stylesheet. (Hint: the CSS could be
a static file.)
Create and use a new template that also outputs the current URL to the
page. (Hint: the Express Request object passed as req can help.)
Create a new router to say “Goodbye” in a similar way to the “Hello”
example.

Summary

This chapter introduced the Express framework for server-side web
applications. Other Node.js server frameworks follow similar conventions and
some are compatible with Express middleware.

This is just the start of the possibilities. In the following chapters, we’ll look at
ways to process form data, implement REST APIs, and manipulate databases
in your Express applications.

Quiz

1. Express is:

a. similar to Apache or NGINX but programmable with Node.js code
b. a Node.js server-side application framework
c. one of several Node.js web server frameworks
d. all of the above

2. Express is typically installed in a project as:

a. a global module

99 Node.js: Novice to Ninja

https://github.com/spbooks/ultimatenode1/tree/main/ch05/express03
https://vimeo.com/707852354/684d060d48
http://expressjs.com/en/4x/api.html#req

b. a development dependency
c. a dependency
d. a single static JavaScript file

3. A package.json file is used to:

a. store configuration information about a Node.js application
b. store application runtime data
c. configure npm
d. all of the above

4. An Express middleware function:

a. is an internal Express module
b. runs when an Express app starts
c. can handle or manipulate the HTTP request and response
d. runs when an Express app shuts down

5. Middleware functions are passed the following parameters in order:

a. the next function, the Request object, the Response object
b. the Request object, the Response object, the next function
c. the next function, the Response object, the Request object
d. the Response object, the Request object, the next function

Getting Started with Express 100

Processing
Form Data

with Express

Chapter

6

101 Node.js: Novice to Ninja

Unless you’re creating a static website, processing user data posted from an
HTML form is at the heart of all web applications. In this chapter, you’ll learn
how Express can:

parse query string data typically sent in an HTTP GET request (see the
“Processing HTTP GET Query Strings” section)
parse posted body data typically sent in an HTTP POST request (see the
“Processing HTTP Post Body Data” section)
receive uploaded files typically sent in a multipart/form-data HTTP POST
(see the “Processing Uploaded Files” section)

Code Examples

The Express examples provided below purposely omit some of the

options recommended in the previous chapter. Dropping features

such as compression, router middleware, and 404 pages makes for

more concise code—but be sure not to forget them in your projects!

Processing Form Data with Express 102

Processing HTTP GET Query Strings

Data can be passed on the URL query string denoted by a ? and a series of
name=value pairs separated by & —such as
http://localhost:3000/?a=1&b=2&c=3 . Query strings are usually added to

HTTP GET requests, although they can be used by any method.

Express automatically parses query strings and returns a name/value object in
the Request .query property. The example URL above returns an object:

{
a: 1,
b: 2,

1

2

Sanitize User Input

The rules of data processing club:

Never trust user data.

See #1.

User data must always be sanitized on the server. You may have

robust HTML and JavaScript validation, but there’s no guarantee the

request came from a browser or worked as you expected. Always

check data before it’s used elsewhere—especially if it’s output to an
HTML page. (Note that the EJS <%= escapes HTML.)

Incoming ?eld data will be a string, so you can check for speci?c

formats using regular expressions and parse to types such as

numbers, dates, or objects to check for errors. The express-

validator module provides a range of validation and sanitization

functions.

For brevity, the examples below don’t check any incoming data, so

please don’t use them on a live server!

103 Node.js: Novice to Ninja

https://developer.mozilla.org/Web/JavaScript/Guide/Regular_Expressions
https://developer.mozilla.org/Web/JavaScript/Reference/Global_Objects/parseFloat
https://developer.mozilla.org/Web/JavaScript/Reference/Global_Objects/Date/parse
https://developer.mozilla.org/Web/JavaScript/Reference/Global_Objects/JSON/stringify
https://express-validator.github.io/
https://express-validator.github.io/
http://expressjs.com/en/4x/api.html#req.query

c: 3
}

The example code in code/ch06/express-get provides a simple example. The
template views/form.ejs implements an HTML <form> , which posts to itself
with its method set to "get" . A table at the top shows all name/value pairs
passed in a data object:

<%- include('partials/_htmlhead'); -%>

<h1><%= title %></h1>

<% if (data) { %>
<p>Data received in last request:</p>
<table>
<% for (const name in data) { %>
<tr>
<th>
<%= name %>:</th>

<td>
<%= data[name] %>

</td>
</tr> <% } %>
</table>

<% } %>

<p>Submission form:</p>

<form action="/" method="get">
<div>
<label for="name">name</label>
<input type="text" id="name" name="name" value="<%= data.name %>" />

</div>
<div>
<label for="job">job</label>
<input type="text" id="job" name="job" value="<%= data.job %>" />

</div>
<div>
<label for="nodejs">like Node.js?</label>
<input type="checkbox" id="nodejs" name="nodejs" value="yes"<% if

Processing Form Data with Express 104

https://github.com/spbooks/ultimatenode1/tree/main/ch06/express-get

➥(data.nodejs) { %> checked<% } %> />
</div>
<input type="hidden" name="date" value="<%= new Date(); %>" />
<button>submit</button>
</form>

<%- include('partials/_htmlfoot'); -%>

(Note that views/partials/_htmlhead.ejs provides a little inline CSS styling.)

The index.js entry script sets the EJS template engine and renders the
form template when a GET request is made to the root / URL. The template

is passed an object containing:

the page title

a data property set to req.query

// Express application
import express from 'express';

// configuration
const cfg = { port: process.env.PORT || 3000
};

// Express initiation
const app = express();

// use EJS templates
app.set('view engine', 'ejs');
app.set('views', 'views');

// render form
app.get('/', (req, res) => {
res.render('form', {
title: 'Parse HTTP GET data',
data: req.query

});
});

// start server

105 Node.js: Novice to Ninja

app.listen(cfg.port, () => {
console.log(`Example app listening at http://localhost:${ cfg.port }`);

});

Following an npm install to install the Express and EJS dependencies, start
the server running with npm start and navigate to http://localhost:3000/ in a
browser.

6-1. An example form

Enter some data and hit submit. The URL query string changes, and all name/
value pairs are displayed. (Note that the date is passed as a hidden input
value.)

Processing Form Data with Express 106

http://localhost:3000/

6-2. Received data displayed with the example form

See the course code/ch06/express-get directory and associated video to run
this code.

Processing HTTP Post Body Data

An HTTP POST sent via an HTML <form> with its method set to "post"

places all data in the body of the request. Express doesn’t parse this data by
default and requires an express.urlencoded() middleware function to
populate a Request .body property with an object containing name/value
pairs.

The code in code/ch06/express-post provides a simple example. The

The body-parser Module

Older editions of Express didn’t include a body parsing function, so

you may see references to a body-parser module in other tutorials.

107 Node.js: Novice to Ninja

https://github.com/spbooks/ultimatenode1/tree/main/ch06/express-get
https://vimeo.com/707852459/64d97f0a1e
http://expressjs.com/en/4x/api.html#express.urlencoded
http://expressjs.com/en/4x/api.html#req.body
https://www.npmjs.com/package/body-parser
https://github.com/spbooks/ultimatenode1/tree/main/ch06/express-post

template views/form.ejs is identical to that shown in the GET example above
(in the “Processing HTTP GET Query Strings” section), except the <form>

method is set to "post" .

The index.js entry script sets the EJS template engine and then defines the
body parsing middleware like so:

// body parsing
app.use(express.urlencoded({ extended: true }));

The extended syntax option uses the qs module to create a richer Request
body object with nested properties and arrays if you’ve defined form fields

appropriately.

The initial page load for the root / URL is an HTTP GET request, while the
form submission is an HTTP POST request. Rather than define these as
separate routes, the index.js entry script uses app.all() so a single
function processes all HTTP methods. It renders the form template and
passes an object where the data property is set to req.body :

// Express application
import express from 'express';

// configuration
const cfg = { port: process.env.PORT || 3000
};

// Express initiation
const app = express();

// use EJS templates
app.set('view engine', 'ejs');
app.set('views', 'views');

// body parsing
app.use(express.urlencoded({ extended: true }));

// render form

Processing Form Data with Express 108

https://www.npmjs.com/package/qs
http://expressjs.com/en/4x/api.html#app.all

// use .all to handle initial GET and POST
app.all('/', (req, res, next) => {
if (req.method === 'GET' || req.method === 'POST') {
res.render('form', {
title: 'Parse HTTP POST data',
data: req.body

});
}
else {
next();

}
});

// start server
app.listen(cfg.port, () => { console.log(`Example app listening at
➥http://localhost:${ cfg.port }`);

});

Following an npm install to install the Express and EJS dependencies, start
the server running with npm start and navigate to http://localhost:3000/ in a
browser.

109 Node.js: Novice to Ninja

http://localhost:3000/

6-3. The example form

Enter some data and hit submit. The data is posted and all name/value pairs
are displayed. (Note the date is passed as a hidden input value.)

Processing Form Data with Express 110

6-4. The example form with POST data

See the course code/ch06/express-post directory and associated video to run
this code.

Processing Uploaded Files

Receiving file uploads in Express is gloriously simple compared to some
languages. However, it requires a third-party module such as formidable to
parse incoming streamed data to one or more files.

The example code in code/ch06/express-file has a package.json file where
Express, EJS, and Formidable are declared as project dependencies:

"dependencies": {
"ejs": "^3.1.6",
"express": "^4.17.1",
"formidable": "^2.0.1"

}

111 Node.js: Novice to Ninja

https://github.com/spbooks/ultimatenode1/tree/main/ch06/express-post
https://vimeo.com/707852546/d64437ee51
https://www.npmjs.com/package/formidable
https://github.com/spbooks/ultimatenode1/tree/main/ch06/express-file

The template views/form.ejs defines a <form> with its method set to
"post" and enctype set to "multipart/form-data" . A field that allows

images to be uploaded is also added:

<input type="file" id="image" name="image" accept="image/*" />

The received data <table> also checks for an imageurl property in the
data object and displays it using an tag when found:

<table>
<% for (const name in data) { %>
<tr>
<th><%= name %>:</th>
<td>
<%= data[name] %>
<% if (name === 'imageurl') { %>
<img src="<%- data[name] %>" alt="uploaded image" />

<% } %>
</td>

</tr>
<% } %>
</table>

The index.js entry script defines an uploads subdirectory, where uploaded
files are stored:

// Express application
import express from 'express';
import formidable from 'formidable';

import { fileURLToPath } from 'url';
import { dirname, parse, sep } from 'path';

// configuration
const
__dirname = dirname(fileURLToPath(import.meta.url)) + sep,
cfg = {
port: process.env.PORT || 3000,
dir: {

Processing Form Data with Express 112

root: __dirname,
uploads: __dirname + 'uploads' + sep

}
};

(Create this uploads subdirectory in your project. A project is somewhere
within your home directory should already have write permissions, but run
chmod 666 uploads if necessary.)

The script then initializes Express and sets uploads as a static directory. This
makes it easy to display an uploaded image for the purposes of this example,
but you’d normally move a valid file to a safer location—perhaps outside the
project directory—to ensure that it can’t be accidentally deleted or
overwritten. (See the “Exercises” section below for pointers.)

// Express initiation
const app = express();

// use EJS templates
app.set('view engine', 'ejs');
app.set('views', 'views');

// static assets
app.use(express.static(cfg.dir.uploads));

Note that the express.urlencoded() middleware is no longer required,
because formidable will also parse the form fields.

The app.all() route uses a single function for all HTTP methods. When this
routing function runs:

It initializes a new formidable object with the upload directory and a
setting to keep the file extension.
The .parse() method is called with the Express Request object (req)
and a callback function that runs once the upload has completed. The
callback is passed an error message (err), the (non-file) data fields, and a
files object.

113 Node.js: Novice to Ninja

http://expressjs.com/en/4x/api.html#app.all
https://github.com/node-formidable/formidable#parserequest-callback

If a single, non-empty image property exists in files , the data object is
supplemented with information about the image. Formidable places it in
the uploads directory with a unique GUID filename to ensure it can’t clash
with previous uploads.
The data.imageurl property is defined by extracting the filename from
the file path and prepending a slash / to define a URL that resolves to the
static directory.

// render form
// use .all to handle initial GET and POST
app.all('/', (req, res, next) => {

if (req.method === 'GET' || req.method === 'POST') {

// parse uploaded file data
const form = formidable({
uploadDir: cfg.dir.uploads,
keepExtensions: true

});

form.parse(req, (err, data, files) => {

if (err) {
next(err);
return;

}

if (files && files.image && files.image.size > 0) {
data.filename = files.image.originalFilename;
data.filetype = files.image.mimetype;
data.filesize = Math.ceil(files.image.size / 1024) + ' KB';
data.uploadto = files.image.filepath;
data.imageurl = '/' + parse(files.image.filepath).base;

}

res.render('form', { title: 'Parse HTTP POST file data', data });

});

}
else {

Processing Form Data with Express 114

next();
}

});

// start server
app.listen(cfg.port, () => {
console.log(`Example app listening at http://localhost:${ cfg.port }`);

});

Following an npm install to install the Express, EJS, and Formidable
dependencies, start the server running with npm start and navigate to
http://localhost:3000/ in a browser.

Callback Functions

The callback function passed to form.parse() is the ?rst callback

example we’ve used. This function is called asynchronously: the

Node.js runtime can perform other tasks while the callback waits

for data.

Understanding JavaScript callbacks, promises, and async/await is

essential for Node.js development. They’re discussed further in

Chapter 9.

115 Node.js: Novice to Ninja

http://localhost:3000/

6-5. The example form

Enter some data, choose an image file, and hit submit. The data is posted and
all name/value pairs are displayed with the image URL displayed in an

tag.

Processing Form Data with Express 116

6-6. Data is displayed with the example form, along with the image

See the course code/ch06/express-file directory and associated video to run
this code.

Exercises

Modify any of the examples so that:

117 Node.js: Novice to Ninja

https://github.com/spbooks/ultimatenode1/tree/main/ch06/express-file
https://vimeo.com/707852620/114d319e3a

a new email field is added to the HTML form
the receiving route only permits data expected in the HTML form—but
nothing else
the user values are validated—especially the email address (a basic regular
expression is fine)
adapt the EJS template to show errors as necessary

For some big bonus points, write code to delete files from the uploads

directory—perhaps those uploaded more than 24 hours ago. You’ll require
Node.js file system methods such as readdir() to read a directory, stat()

to fetch file information, and unlink() to delete a file.

Summary

This chapter has built on your Express knowledge to illustrate how you can
receive and process data uploaded to the server. This is essential for any web
application and Express makes life a little easier for developers.

Quiz

1. Data passed on the URL query string:

a. is not parsed in Express by default
b. is available in an object returned by the Request .query property
c. is available in an object returned by the Request .querystring property
d. is available in an object returned by the Request .body property

2. Body data in an HTTP POST request:

a. is not parsed in Express by default
b. is available in an object returned by the Request .query property
c. is available in an object returned by the Request .querystring property
d. is available in an object returned by the Request .body property

3. File upload data in an HTTP POST request:

Processing Form Data with Express 118

https://developer.mozilla.org/docs/Web/JavaScript/Guide/Regular_Expressions
https://developer.mozilla.org/docs/Web/JavaScript/Guide/Regular_Expressions
https://nodejs.org/dist/latest/docs/api/fs.html
https://nodejs.org/dist/latest/docs/api/fs.html#fspromisesreaddirpath-options
https://nodejs.org/dist/latest/docs/api/fs.html#fspromisesstatpath-options
https://nodejs.org/dist/latest/docs/api/fs.html#fspromisesunlinkpath

a. is not parsed in Express by default
b. requires a third-party module to process the incoming data
c. should be handled asynchronously in Node.js
d. all of the above

119 Node.js: Novice to Ninja

How to Use
the npm

Node
Package
Manager

Chapter

7

How to Use the npm Node Package Manager 120

You can attribute much of Node’s success—and frustration—to npm. Node
Package Manager provides ways to find, install, update, manage, publish, and
remove Node.js packages. A package could be anything from a simple, one-
line JavaScript module to a full application.

7-1. The npm logo

npm is the world’s largest software registry. Almost 1.5 million packages have
been published at registry.npmjs.org and the majority are free to include in
your own projects. You can publish your own package with a single command,
and almost 1,000 developers do that every day.

Earlier chapters in this course introduced some npm concepts, but the
following sections explain options you’ll use daily (plus a few you’ll use less
frequently). The information is important, although you can skim it and use this
chapter for reference later.

Global vs Local Packages

By default, npm installs packages in the local project directory so it can be

npm Alternatives

npm isn’t the only Node.js package manager, and you can try

alternatives such as Yarn and pnpm. However, npm is installed with

Node.js and it’s good enough for most developers.

121 Node.js: Novice to Ninja

https://registry.npmjs.org/
https://github.com/yarnpkg/yarn
https://github.com/pnpm/pnpm

used in an application.

You can also install packages globally so that they’re available across your
whole system. This is most practical for command-line applications and
utilities that could be used at any time from any directory.

For example, to install the ESLint JavaScript validator globally, run npm

install eslint --global .

You can then run eslint <file.js> from any directory to validate a
JavaScript file.

However, you could install eslint in a project directory if you wanted to
guarantee all team members had the module and fixed their errors before
committing code to a project.

npm Help

npm documentation is available at docs.npmjs.com, but help is also available
from the command line: npm help . For further details, enter npm help npm , or
request help about a specific npm command. For example:

npm link

npm link symlinks the current project directory so it acts like a

global package. A script can then be run from any other directory.

This can be useful when developing a package you intend to use

globally. There’s no need to publish and install it as a global package

every time you make a change.

npm uninstall <name> --global removes the symlink.

Don’t worry if this isn’t clear now. You’re unlikely to use this feature

until you start sharing modules with other developers.

How to Use the npm Node Package Manager 122

https://eslint.org/
https://docs.npmjs.com/

npm help install
npm help list
npm help config
npm help package.json

npm Con2guration

You’ll rarely need to change npm configurations, but you can view your
defaults with npm config list , or you can view a complete list of settings
with npm config list -l .

An individual setting can be viewed. For example, show the default author
name:

npm config get init-author-name

A setting can also be changed:

npm config set init-author-name="Craig Buckler"

From this point forward, npm won’t prompt for the author name when
initializing any project.

A setting can be unset (or deleted) with npm config delete init-author-name .

Project Initialization

To start a new project, you should create a new directory, navigate to it, and
run npm init .

This prompts for information about the project—such as it name, description,
Git repository, and so on. Use npm init --yes to accept all defaults without
prompting.

npm init creates a configuration file named package.json . You can adapt

123 Node.js: Novice to Ninja

this from another project or edit it manually if you prefer. The file contains
information about your project and its dependencies. For example:

{
"name": "express",
"version": "1.0.0",
"description": "Example Express app",
"type": "module",
"main": "index.js",
"scripts": {
"start": "nodemon index.js"

},
"author": "Craig Buckler",
"license": "MIT",
"dependencies": {
"compression": "^1.7.4",
"ejs": "^3.1.6",
"express": "^4.17.1"

}
}

Your project can then be installed on another device using npm install ,
which downloads all the required dependencies for the application.

Common package.json values include:

How to Use the npm Node Package Manager 124

name description

name the project name—which must be unique if you want to
publish on the npm registry (see the “Publishing
Packages” section below)

version the semantic version number (see the “Semantic
Versioning” section below)

description a short description of the project

type either "module" for ES6 modules or "commonjs" (the default)

keywords an array of strings to help others discover the project

repository the code repository, often on GitHub

homepage the project home page URL (often the GitHub README.md

file)

bugs the project issue tracker URL (often the GitHub Issues
panel)

licence a license for usage restrictions (if any)—set "private" if
you’re not sharing the project

main the main entry/starting script

scripts script commands (see the “Using npm Scripts” section
below) which typically build, test, launch, or deploy a
project

dependencies project dependencies (see the “Project Dependencies”
section below) required at runtime

devDependencies development dependencies (see the “Development
Dependencies” section below) required during
development

Lesser-used values include:

125 Node.js: Novice to Ninja

https://github.com/

name description

config application runtime configuration parameters such
as ports

publishConfig configuration parameters used at publish time

engines the Node.js version required—such as"node":
">=14.0.0"

os an array of compatible operating systems—such as
["linux", "darwin", "win32"]

cpu an array of compatible CPU architectures—such as
["x64"]

browser the main entry/starting script for client-side
JavaScript packages installed with npm (used
instead of main)

funding a funding page URL

files an array of file patterns that specifies the files
included when the package is installed as a
dependency

bin a list of one or more executable files to install in the
PATH

man one or more manual page files

peerDependencies compatibility of your package with another

bundledDependencies other packages bundled with the package

optionalDependencies an optional dependency; the package should run
without it

private set "true" and npm will never publish the package to
the npm registry

See the online help documentation or run npm help package.json for a full
description.

How to Use the npm Node Package Manager 126

https://docs.npmjs.com/configuring-npm/package-json

Semantic Versioning

Always use a semantic version for your project with MAJOR.MINOR.PATCH

numbers separated by a period (.).

When a change occurs, you should increment the appropriate number and
zero those that follow. Assuming a current version of 1.2.33 :

a new bug fix would update the PATCH number to version 1.2.34

new functionality that didn’t break backward compatibility would update
the MINOR number to version 1.3.0

a major update with incompatible API changes would update the MAJOR

number to version 2.0.0

Not all developers follow this convention, so read the documentation
carefully!

Project Dependencies

A package such as Express is (usually) required at runtime. It’s a dependency
for your application; the app would fail to run without it.

Project dependencies are listed in the dependencies section of
package.json . When your project is deployed to another machine (such as a

live production server), running npm install installs all dependencies.

Development Dependencies

Packages such as the Browsersync live reload server or the ESLint JavaScript
validator are (usually) used during development. They aren’t required by your
application when it runs, so they aren’t required on a live production server.

Development dependencies are listed in the devDependencies section of
package.json . They aren’t installed if you run npm install when the
NODE_ENV environment variable is set to production . This can be set on Linux

127 Node.js: Novice to Ninja

http://expressjs.com/
https://browsersync.io/
https://eslint.org/
https://eslint.org/

or macOS:

NODE_ENV=production

This is the Windows cmd prompt:

set NODE_ENV=production

And this for Windows Powershell:

$env:NODE_ENV="production"

Searching for Packages

You’ll need to install and use a third-party dependency for your application at
some point. Always consider whether you really need it. npm is often criticized
for reasons such as:

There may be dozens of packages that perform a similar function. How
long will it take to evaluate the best option?
Installation can cause an avalanche of further installations, as each
package requires others that have further dependences. You can even end
up with multiple versions of the same package in the same project.
Every third-party package and subpackage raises security implications.
npm has a registry of known vulnerabilities, but information won’t be
available for new or less popular packages.

Is it more practical to write the code yourself?

A small module specific to your application is a good candidate. You’ll learn
more and be able to write fully customizable code that’s fast and lean. Over
the long term, it may even take less time and effort than maintaining a
regularly updated third-party package.

Larger or more generic modules such as frameworks (Express), database

How to Use the npm Node Package Manager 128

drivers, or image compressors are full projects in their own right. It makes
sense to leverage the many hours of development and real-world testing.

There’s an infinite array of situations between these extremes. Only you can
make a judgement, but you may find yourself using fewer packages as your
Node.js and JavaScript knowledge increases.

Perhaps start by browsing a list of curated Node.js packages:

github.com/sindresorhus/awesome-nodejs
nodejs.libhunt.com

Alternatively, you can search for packages from the command line using npm

search <term> . For example, to find a MongoDB database driver, enter npm

search mongodb .

7-2. An npm search

Development Dependency Limits?

Development tools (in devDependencies) have no direct effect on

your application. That said, using a large number will increase

installation times, require ongoing maintenance, and may confuse

new team members.

129 Node.js: Novice to Ninja

https://github.com/sindresorhus/awesome-nodejs
https://nodejs.libhunt.com/

More practically, it’s best to use an online search engine:

npmjs.com: the official repository
npms: a fast search that ranks packages by quality
snyk.io/advisor/: ranks packages with a health percentage

There are tools for comparing two or more packages:

npmcompare.com
moiva.io

Or tools to extract package information:

anvaka.com: dependency visualization
npm-stat.com: download and usage statistics

Hardcore coders can even examine the JSON data used by npm at
registry.npmjs.org! Add the package name to the URL—for example,
registry.npmjs.org/express.

If you’re struggling to choose, opt for a package that’s popular with a non-
restrictive usage license, recent and regular updates, a small size, the fewest
dependencies, and no major outstanding issues.

Installing Packages

To install a development dependency, run npm install , followed by one or
more space-separated package names. For example:

npm install express mongodb

To install a package as a development dependency, add --save-dev to the
command:

npm install browser-sync --save-dev

How to Use the npm Node Package Manager 130

https://www.npmjs.com/
https://npms.io/
https://snyk.io/advisor/
https://npmcompare.com/
https://moiva.io/
http://npm.anvaka.com/
https://npm-stat.com/
https://registry.npmjs.org/
https://registry.npmjs.org/express

These options install the latest package into the node_modules directory and
update package.json with the name and current version number.

If you require a specific or earlier package, add @ and the version number to
the package name. For example:

npm install ejs@2.7.4

To install a package globally so it’s available in any directory, add --global to
the command:

npm install eslint --global

Semantic Constraints

package.json uses special codes to indicate which version of a package can
be installed on a clean machine using MAJOR.MINOR.PATCH semantic versioning
(see the “Semantic Versioning” section above):

.gitignore node_modules

There’s no need to add the node_modules directory to your Git (or

other) repository, because npm install can re-create the

dependency tree.

Shortcut Aliases

Most npm commands and switches have shorter aliases. Either i

or add can be used in place of install , and -g can be used

instead of --global . For example:

npm i eslint -g

131 Node.js: Novice to Ninja

1.2.33 : install an exact version
>1.2.33 : install a version greater than 1.2.33 (2.0.0 is permitted)
>=1.2.33 : install a version greater than or equal to 1.2.33

<1.2.33 : install a version less than 1.2.33

<=1.2.33 : install a version less than or equal to 1.2.33

^1.2.33 : install any greater or equal compatible version with the same
MAJOR number—such as 1.3.0 but not 2.0.0 (this is the default)
~1.2.33 : similar to ^ but won’t go beyond the next MINOR number—that

is, a maximum of 1.3.0

* (or an empty string): install any version

Versions can be combined—for example, <2.0.0 || >=3.0.0 , to skip version
2.x.x .

The installation of each package (and subpackage) is recorded in package-

lock.json . This ensures subsequent installs are identical regardless of
available updates. The file can be added to your code repository, although you
can run into problems if the application is installed on different operating
systems. Personally, I prefer to set the exact version in package.json , omit
package-lock.json from the Git repo, and then update and test manually

whenever new packages are available. (See the “Finding Outdated Packages”
section below.)

“No-install” Execution

The npx command allows you run a package command without installing it
locally. For example, try running the cowsay talking cow package:

npx cowsay "I love Node.js!"

How to Use the npm Node Package Manager 132

https://www.npmjs.com/package/cowsay

7-3. The cowsay package

You’ll be prompted to agree to the download the first time this command is
run. From then on, the version in the npm cache is used.

Listing Packages

To list all the packages installed in your project, enter npm list (or use the

npx Local Execution

A package such as eslint or rollup can’t be run directly from the

command line when it’s installed locally. The following command

fails if ESLint is installed locally:

eslint file.js

Rather than installing it globally, you can run a local package by

de?ning an npm script (see the “Using npm Scripts” section below)

or using npx. This command works:

npx eslint file.js

133 Node.js: Novice to Ninja

aliases ls , la , or ll in place of list).

7-4. npm list

Older versions of npm show all packages and child packages. Add --depth=0

to view the top-level installations only:

npm list --depth=0

The --depth argument can be used to view the package dependency tree to
a specific level. For example, npm list --depth=1 shows your installed
packages and their immediate dependencies but doesn’t go any deeper.

How to Use the npm Node Package Manager 134

135 Node.js: Novice to Ninja

7-5. npm list --depth=1

You can list globally installed packages using npm list --global .

7-6. npm list --global

Finding Outdated Packages

Find local packages that have received updates using npm outdated or global
packages with updates using npm outdated --global .

7-7. npm outdated --global

Older packages are listed with their current and latest version. The
wanted column indicates which version will be installed if you run npm

update .

How to Use the npm Node Package Manager 136

To update a local package, you can do one of the following:

run npm update to update all packages according to semantic constraints
(see the “Semantic Constraints” section above)
run npm update <package> to update one or more space-separated
packages according to semantic constraints (see the “Semantic
Constraints” section above)
edit package.json , change any necessary version numbers, and rerun
npm install

To update global packages, run npm install <package> --global . Again, any
number of space-separated packages can be listed.

Removing Packages

You should always remove unused packages. They increase installation times,
use disk space, could have vulnerabilities, and are likely to confuse other
developers working on the project. Remove packages with npm uninstall

<package> , (or use the aliases remove , rm , r , un , or unlink in place of
uninstall).

Update npm with npm

npm itself is a global package that you can update with npm

install npm --global or the shorter npm i npm -g .

137 Node.js: Novice to Ninja

7-8. npm uninstall

package.json is updated and the package is removed from the dependencies

or devDependencies section. There’s no need to specify the type.

Global packages can be removed with the --global switch. For example:

npm uninstall eslint --global

Using npm Scripts

The "scripts" section of package.json lists useful script aliases you can run
during development, testing, building, deployment, and so on. A script is useful

How to Use the npm Node Package Manager 138

when you find yourself repeatedly retyping the same command.

Consider the JavaScript bundler Rollup, which can build a single optimized
client-side JavaScript file from multiple source files. The command to compile
a development build is long. For example:

npx rollup --config --environment NODE_ENV:development --sourcemap --watch
➥--no-watch.clearScreen

It can therefore be defined as a script in package.json . For example:

"scripts": {
"rollup": "rollup --config --environment NODE_ENV:development --sourcemap
➥--watch --no-watch.clearScreen"

}

Note that npx isn’t required in the command, because npm can execute
locally installed packages.

You can now start the rollup command with npm run rollup .

Any number of scripts can be added to package.json , but each must have a
unique name.

Special Scripts

The following script names can be defined when appropriate:

"start" : starts your application. You used it in previous chapters to launch
"nodemon index.js" .
"test" : runs tests on your application code using a test runner such as

Mocha, Jest, or AVA.
"stop" : stops your application. This may only be necessary if your

application starts in the background. I’ve never used it!

The run command isn’t required, so you can launch these scripts with npm

139 Node.js: Novice to Ninja

https://rollupjs.org/
https://www.sitepoint.com/rollup-javascript-bundler-introduction/
https://www.sitepoint.com/rollup-javascript-bundler-introduction/
https://mochajs.org/
https://jestjs.io/
https://github.com/avajs/ava

start , npm test , and npm stop .

Pre and Post Scripts

Any script can have one or both of these:

a "pre<name>" script, which automatically runs before "<name>"

a "post<name>" script, which automatically runs after "<name>"

For example:

"scripts": {
"prebuild": "rm -rf build",
"build": "rollup --config",
"postbuild: "echo build complete"

}

Running npm run build runs all three scripts in the order shown above.

Life Cycle Scripts

npm permits life cycle scripts that automatically execute at certain points
during package publication (see the “Publishing Packages” section below) or
installation. The reserved script names are prepare , prepublish ,
prepublishOnly , prepack , and postpack .

You’re unlikely to use these in your own projects, but avoid using these names
for other purposes.

Sophisticated Scripting

npm scripts are simple but powerful. Developers often use them instead of
dedicated JavaScript task runners such as Grunt and Gulp.

Consider the following scripts to clean a build directory then generate HTML,
CSS, and JavaScript using (imaginary) Node.js tools:

How to Use the npm Node Package Manager 140

https://docs.npmjs.com/using-npm/scripts
https://gruntjs.com/
https://gulpjs.com/

"scripts": {
"clean" : "rm -rf build",
"build:html" : "sitegen ./src/content/ ./build/ --compress",
"build:css" : "cssgen ./src/css/main.css --out ./build/css/",
"build:js" : "jsgen ./src/js/main.js ./build/js/main.js --minify"

}

A single build script could run the clean script followed by all build tools in
parallel:

"build" : "clean && (build:html & build:css & build:js)"

Executing npm run build performs all tasks in a bash shell. However, it won’t
work in Windows or other shells that don’t support & and && command
chaining.

Cross-platform scripts can be created using task packages such as yall-
scripts, concurrently, or npm-run-all. The rimraf package can also replace the
rm command.

You can install cross-platform modules:

npm install yall-scripts rimraf --save-dev

Then update package.json to use them:

"scripts": {
"clean" : "rimraf build",
"build:html" : "sitegen ./src/content/ ./build/ --compress",
"build:css" : "cssgen ./src/css/main.css --out ./build/css/",
"build:js" : "jsgen ./src/js/main.js ./build/js/main.js --minify",
"buildcode" : "yall --parallel build:*",
"build" : "yall --sequential clean buildcode"

}

npm run build will now work on any platform that can run Node.js.

141 Node.js: Novice to Ninja

https://www.npmjs.com/package/yall-scripts
https://www.npmjs.com/package/yall-scripts
https://www.npmjs.com/package/concurrently
https://www.npmjs.com/package/npm-run-all
https://www.npmjs.com/package/rimraf

1

Publishing Packages

Your own packages can be published to the npm repository. This may be
practical when you want to share code with others or create your own libraries
for use in several projects. Skip down to the “Exercises” section if you’d rather
think about this later!

To publish a package, you must sign up for an account at npmjs.com. A valid
email address is required, and it will be publicly added to the metadata of any
package you publish.

Before publishing, update your package package.json file:

Use a unique "name" .

All npm projects must have a unique name. Naming is difficult. You have 1.5
million competitors, so use a tool such as the npm-package-name-checker to

Publication Preparation

Publishing code to the npm repository makes it public. Always

ensure it doesn’t contain private information such as Git or

database credentials.

Authors of popular packages receive regular requests for support

or feature updates. Add a disclaimer to the README.md ?le in the

root of your project if you’d rather not offer a free consultancy

service! That said, you can request funding and watch the cash roll

in as your package becomes an essential part of every Node.js

project.

Two-factor Authentication

Accounts are secured with 2FA, so you’ll need an app such as

Google Authenticator, Microsoft Authenticator, Authy, or andOTP.

How to Use the npm Node Package Manager 142

https://docs.npmjs.com/cli/v8/configuring-npm/package-json#funding
https://www.npmjs.com/signup
https://play.google.com/store/apps/details?id=com.google.android.apps.authenticator2
https://www.microsoft.com/authenticator
https://authy.com/
https://github.com/andOTP/andOTP
https://remarkablemark.org/npm-package-name-checker/

2

3

4

check availability. If you can’t find a decent name, prefix the name with your
account ID—such as @username/my-package .

Set the next semantic "version" number (See the “Semantic
Versioning” section above).

You can’t overwrite an existing package with the same version number. The
next unique version must be set every time you publish.

Add an optional array of "files" glob patterns.

You can define which files are included in the package. The following example
includes all files and subdirectories in the dist and doc directories. All other
files except package.json are omitted:

"files": [
"dist/**/*",
"doc/**/*"

],

Add optional "bin" command(s) aliases.

To run your package by its package.json "name" , define a relative path to its
script as a "bin" value. For example:

"name": "myapp",
"bin": "./dist/myapp.js"

The myapp command can be run from the command line when the package is
installed globally. (npx myapp can be used for local installations.)

"bin" can also be set to an array if you have more than one script or require
aliases. For example:

143 Node.js: Novice to Ninja

https://en.wikipedia.org/wiki/Glob_(programming)
https://docs.npmjs.com/cli/v8/configuring-npm/package-json#bin

1

2

"name": "myapp",
"bin": [
"myapp": "./dist/myapp.js",
"ma": "./dist/myapp.js",
"myapp2": "./dist/myapp2.js"

]

To publish, navigate to your project directory, then log in at the terminal with
npm login . Publish your package with npm publish .

Assuming there are no errors, npm will publish your package so it can be
installed from anywhere. At this point, it’s best to commit the code to your
repository to ensure the codebases are the same.

Publishing Tips

You’re unlikely to publish many packages at the start of your Node.js journey,
but the following tips may help as you develop more complex projects:

Create packages that meet your needs to solve a specific problem.
Create small, focused packages that do one thing well and can be reused
across many projects.
It may be better to create a new package than complicate an existing one.

In summary: keep it simple.

Exercises

Attempt the following exercise to improve your npm knowledge:

Initialize a new Node.js project, ideally using a name that’s not already

taken in the npm registry.

Search for packages that can output colors to the terminal.

How to Use the npm Node Package Manager 144

3

4

5

Install your chosen package into the project.

Create a small command-line application that’s passed a string and color

argument. Output the string in that color.

Optionally, publish the code to npm, then install it as a global package so

you can run it from anywhere.

The video for this chapter describes a solution that’s available in the example
code, the npm registry, and GitHub.

Summary

This chapter has expanded on your npm knowledge so you can find, install,
update, manage, publish, and remove Node.js packages in any project.

The next chapter looks at the options for using these packages and your own
modules in Node.js applications.

Quiz

1. npm help is available from:

a. online documentation
b. the npm help command
c. using npm help <command>

d. any of the above

2. A Node.js package.json file can be initialized with:

a. npm new

b. npm init

c. npm start

d. any of the above

145 Node.js: Novice to Ninja

https://vimeo.com/707852741/b28b04f622
https://github.com/spbooks/ultimatenode1/tree/main/ch07/concol
https://github.com/spbooks/ultimatenode1/tree/main/ch07/concol
https://www.npmjs.com/package/concol
https://github.com/craigbuckler/concol

3. Your project’s package.json "version" is currently "1.2.33" and you are
adding a new feature (it won’t break backward compatibility). The new version
number should be:

a. 2.0.0

b. 1.3.0

c. 1.3.1

d. 1.2.34

4. How do you install a package for use in your project?

a. npm add <name> --local

b. npm require <name>

c. npm install <name>

d. any of the above

5. How do you list all the packages installed in your project without viewing
any child dependencies?

a. npm list

b. npm ll

c. npm ls --depth=0

d. any of the above

6. How can you find packages that have newer updates in the local project?

a. npm outdated

b. npm old

c. npm newer

d. npm update

How to Use the npm Node Package Manager 146

Using ES2015
and

CommonJS
Modules

Chapter

8

147 Node.js: Novice to Ninja

The previous chapter explained how npm can be used to find and install
packages containing multiple JavaScript files, or modules. In this chapter, we’ll
examine how modules are used in Node.js.

Modules provide a way to define functionality in one file and use it in another.
Developers often create encapsulated code libraries responsible for handling
related tasks. The benefits include:

code can be split into smaller files with self-contained functionality
the same modules can be shared and reused across any number of
applications
modules need never be examined or updated by others once they’ve been
proven to work
code referencing a module understands it’s a required dependency
modules prevent naming conflicts: function x() in module1.js can’t clash
with function x() in module2.js

Bizarrely, there was no concept of modules in JavaScript during its first twenty
years. You couldn’t directly reference or include one JavaScript file in another.
Client-side developers would either:

add multiple <script> tags to an HTML page
concatenate scripts into a single file, perhaps using a bundler such as
webpack or task runners such as Grunt and Gulp
use a module loading library such as RequireJS or SystemJS—all of which
adopted syntaxes such as CommonJS, AMD, or UMD

It would have been inconceivable for Node.js not to support modules when it

Skip Ahead?

The information in this chapter is important, since you’ll encounter

issues with older Node.js packages. However, all the packages

referenced in this course have been tested for compatibility, so you

can skip ahead and return when you eventually run into a problem!

Using ES2015 and CommonJS Modules 148

https://webpack.github.io/
https://gruntjs.com/
https://gulpjs.com/
http://requirejs.org/
https://github.com/systemjs/systemjs
http://www.commonjs.org/
https://github.com/amdjs/amdjs-api/wiki/AMD
https://github.com/umdjs/umd

was released in 2009. CommonJS syntax was chosen as the Node.js module
standard, and support was added to npm.

CommonJS

A CommonJS module makes a function or value publicly available using
module.exports . For example:

// lib.js
const PI = 3.1415926;

// add values
function sum(...args) {
log('sum', args);
return args.reduce((num, tot) => tot + num);

}

// multiply values
function mult(...args) {
log('mult', args);
return args.reduce((num, tot) => tot * num);

}

// private logging function
function log(...msg) {
console.log(...msg);

}

module.exports = { PI, sum, mult };

A require statement includes a module by referencing either:

its relative file path (./lib.js , ../lib.js)
a fully qualified file path (/path/lib.js)
its npm name following installation (express , chalk , etc.)

The module is included at the point it’s referenced during execution of the
script.

149 Node.js: Novice to Ninja

You can require specific named exported items:

const { sum, mult } = require('./lib.js');

console.log(sum(1,2,3,4)); // 10
console.log(mult(1,2,3,4)); // 24

Or you can require all exported items using a (namespaced) variable:

const lib = require('./lib.js');

console.log(lib.PI); // 3.1415926
console.log(lib.add(1,2,3,4)); // 10
console.log(lib.mult(1,2,3,4)); // 24

A module with a single exported item can be defined as a default. For example:

// myclass.js
class MyClass {}
module.exports = MyClass;

And it can be defined using any name:

const
MyNewClass = require('myclass.js'),
myObj = new MyNewClass();

CommonJS dynamically imports file names by default, and can also import
JSON data as a JavaScript object. For example:

const
file = `data${ Math.round(Math.random() * 3) }.json`,
data = require(file);

console.log(data.propertyOne || 'propertyOne not set');

However, top-level await isn’t supported. Asynchronous calls must be
wrapped in an immediately invoked function expression (IIFE)—a function

Using ES2015 and CommonJS Modules 150

that runs as soon as it’s defined. For example:

function waitOneSec() {
return new Promise(
(resolve) => setTimeout(resolve, 1000)

);
}

(async () => {
await waitOneSec();

})();

CommonJS was the Node.js module standard until the arrival of ES2015
modules.

ES2015 Modules (ESM)

A native JavaScript module standard was proposed in ES2015 (ES6).

Everything inside an ES2015 module is private by default and runs in strict
mode (there’s no need for 'use strict'). Public properties, functions, and
classes are exposed using export . For example:

// lib.js
export const PI = 3.1415926;

// add values
export function sum(...args) {
log('sum', args);
return args.reduce((num, tot) => tot + num);

}

// multiply values
export function mult(...args) {
log('mult', args);
return args.reduce((num, tot) => tot * num);

}

// private logging function

151 Node.js: Novice to Ninja

function log(...msg) {
console.log(...msg);

}

Alternatively, a single export statement can declare one or more public
items. For example:

// lib.js
const PI = 3.1415926;

// add values
function sum(...args) {
log('sum', args);
return args.reduce((num, tot) => tot + num);

}

// multiply values
function mult(...args) {
log('mult', args);
return args.reduce((num, tot) => tot * num);

}

// private logging function
function log(...msg) {
console.log(...msg);

}

export { PI, sum, mult };

An import statement includes ES modules using either:

a relative URL (starting ./ or ../)
a fully qualified URL (such as file:///home/path/lib.js)
its npm name following installation (express , chalk , etc.)

Using ES2015 and CommonJS Modules 152

All ES modules and their submodules are resolved and imported once before
your script executes. It doesn’t matter where they’re declared in your script.

You can import specific named items:

import { sum, mult } from './lib.js';

console.log(sum(1,2,3,4)); // 10
console.log(mult(1,2,3,4)); // 24

Or imports can be aliased to resolve naming conflicts:

import { sum as addAll, mult as multiplyAll } from './lib.js';

console.log(addAll(1,2,3,4)); // 10
console.log(multiplyAll(1,2,3,4)); // 24

Alternatively, all public items can be imported into a namespaced variable:

import * as lib from './lib.js';

console.log(lib.PI); // 3.1415926
console.log(lib.add(1,2,3,4)); // 10
console.log(lib.mult(1,2,3,4)); // 24

A module with a single item to export can set a default . For example:

Importing External URLs

Deno and browser JavaScript can import URLs from other domains:

import { someFunction } from 'https://example.com/lib.js';

This isn’t supported in Node.js but will arrive in a future release. You

can use an HTTPS loader, although it’s slower than disk access, the

module isn’t cached, and there are security implications.

153 Node.js: Novice to Ninja

https://nodejs.org/dist/latest/docs/api/esm.html#https-loader

// moduleWithDefault.js
export default function() { ... };

Or:

// moduleWithDefault.js
function x() { ... };
export default x;

The default is imported without curly braces and can use any name. For
example:

import myDefault from './moduleWithDefault.js';

This is effectively the same as this:

import { default as myDefault } from './moduleWithDefault.js';

Dynamic module loading—perhaps from a generated value—is possible using
the import() function, which returns a promise. For example:

const
script = `./script${ Math.round(Math.random() * 3) }.js`
randomImport = await import(script);

This affects performance and makes code validation difficult. Only use the
import() function when there’s no other option—for example, an imported

script is created after the application starts.

Node.js version 17 and above also support JSON loading and parsing using the
import() function:

import data from './data.json' assert { type: 'json' };

Finally, ESM supports top-level await . For example:

Using ES2015 and CommonJS Modules 154

function waitOneSec() {
return new Promise(
(resolve) => setTimeout(resolve, 1000)

);
}

await waitOneSec();

Comparison of CommonJS and ES2015 Modules

CommonJS and ES2015 module syntaxes are superficially similar, but they
work in different ways:

Each CommonJS require references a file that’s dynamically loaded on
demand during execution.
Each ESM import references a URL that’s hoisted and pre-parsed to
resolve further imports. This occurs before your code is executed. Dynamic
importing of modules isn’t directly supported or recommended.

Consider this ES2015 module:

// ESM two.mjs
console.log('running two');
export const hello = 'Hello from two';

It's imported by this script:

// ESM one.mjs
console.log('running one');
import { hello } from './two.mjs';
console.log(hello);

This is the output when running node one.mjs :

running two
running one

155 Node.js: Novice to Ninja

hello from two

Now consider this CommonJS module:

// CommonJS two.cjs
console.log('running two');
module.exports = 'Hello from two';

It's required by this script:

// CommonJS one.cjs
console.log('running one');
const hello = require('./two.cjs');
console.log(hello);

This is the output when running node one.cjs :

running one
running two
hello from two

Execution order is critical in some applications—and what would happen if
ES2015 and CommonJS modules were mixed in the same file?

It took several years for ESM support to arrive in Node.js. The following
approach was adopted to resolve potential compatibility problems:

CommonJS is the default (or set "type": "commonjs" in package.json).
Any file with a .cjs extension is parsed as CommonJS.
Any file with a .mjs extension is parsed as ESM.
Running node --input-type=module index.js parses the entry script as
ESM.
Setting "type": "module" in package.json parses the entry script as
ESM.

Using ES2015 and CommonJS Modules 156

Importing CommonJS Modules in ES2015

Node.js can import a CommonJS module into an ESM file. For example:

import lib from './lib.cjs';

This usually works well, and Node.js makes syntax suggestions when
problems occur.

Requiring ES2015 Modules in CommonJS

You can’t require an ES module in a CommonJS file. ESM modules load
asynchronously, so they aren’t compatible with synchronous loading and
execution in CommonJS.

One way around this is the dynamic import() function, which loads a module
on demand:

// CommonJS script
(async () => {

const lib = await import('./lib.mjs');

// ... use lib ...

})();

Alternatively, the esm package provides a way to import ESM code in
CommonJS.

This chapter’s video demonstrates how CommonJS and ESM modules can be
used interchangeably.

Using ES2015 Modules in Browsers

This section isn’t specific to Node.js, but it may be useful if you’re developing a
cross-platform JavaScript library that works both client-side and server-side

157 Node.js: Novice to Ninja

https://developer.mozilla.org/docs/Web/JavaScript/Reference/Statements/import#dynamic_import
https://www.npmjs.com/package/esm
https://vimeo.com/707852989/6808c19c71

(it’s isomorphic).

Browsers load ES modules asynchronously and defer execution until the DOM
is ready. They run in the order specified by each <script> tag:

<script type="module" src="./runsfirst.js"></script>
<script type="module" src="./runssecond.js"></script>

Or as specified by an inline import :

<script type="module">
import { something } from './somewhere.js';
// ...
</script>

Browsers without ESM support don’t load scripts with a type="module"

attribute. Browsers with ESM support don’t load scripts with a nomodule

attribute:

<script type="module" src="runs-when-ESM-supported.js"></script>
<script nomodule src="runs-when-ESM-is-not-supported.js"></script>

Modules must be served with the MIME type application/javascript or
text/javascript . A CORS header such as Access-Control-Allow-Origin: *

must also be set if a module can be imported from another domain.

Summary

The module situation in Node.js can be confusing. It has reached a point
where:

some libraries are CommonJS
some libraries are ESM
some libraries provide builds for both CommonJS and ESM

CommonJS was the only option for several years. There’s little benefit

Using ES2015 and CommonJS Modules 158

https://developer.mozilla.org/Web/HTTP/CORS

converting a large project to ESM, especially where it uses older modules with
compatibly issues.

Moving forward, ES2015 module syntax is the JavaScript standard
implemented in browsers and the Deno runtime. Personally, I like CommonJS,
but I recommend ES modules for new Node.js projects. All the examples in
this course use ESM. Importing CommonJS modules into ESM is usually
possible, but you may need to consider alternative packages if problems
occur.

For more information, refer to:

JavaScript modules on MDN
CommonJS modules on nodejs.org
ECMAScript modules on nodejs.org

Quiz

1. Node.js natively supports the following module syntaxes:

a. CommonJS and ECMAScript modules
b. CommonJS and AMD
c. ECMAScript modules and UMD
d. AMD and UMD

2. Which syntax does CommonJS use to declare and use public module
functions?

a. export and import

b. module.exports and import

c. module.exports and require

d. export and require

3. Which syntax do ES modules use to declare and use public functions?

159 Node.js: Novice to Ninja

https://deno.land/
https://developer.mozilla.org/docs/Web/JavaScript/Guide/Modules
https://nodejs.org/dist/latest/docs/api/modules.html
https://nodejs.org/dist/latest/docs/api/esm.html

a. export and import

b. module.exports and import

c. module.exports and require

d. export and require

4. Which of the following is true?

a. CommonJS and ESM operate identically
b. you can usually import a CommonJS modules in ESM
c. you can usually require an ES module in CommonJS
d. all of the above

5. The import() function:

a. can import an ES module into CommonJS
b. can dynamically load an ES module after the application starts
c. returns a promise
d. all of the above

Using ES2015 and CommonJS Modules 160

Asynchronous
Programming

in Node.js

Chapter

9

161 Node.js: Novice to Ninja

This chapter discusses the benefits and challenges of asynchronous
programming in JavaScript. Asynchronous concepts are rarely evident in other
languages, but it’s impossible to avoid them in Node.js.

You may have written asynchronous event handling functions in client-side
JavaScript. These should run quickly, and pages don’t remain open for long; a
bug could cause problems for an individual user, but a browser restart or page
reload would fix it. However, your Node.js app is the central point of access for
all users and must remain active without a restart. A small asynchronous bug
can generate memory leaks that eventually crash the application.

This is one of the biggest causes of confusion when developers migrate from
other languages, so please don’t skip this chapter! Asynchronous
programming can seem complex, but a few pointers will help you avoid
common pitfalls.

Single-threaded Non-blocking I/O Event-

looping What?

Imagine you’re running a pizza restaurant on your own. You take all the orders
and prepare all the pizzas but can only manage one task at a time. You receive
your first order, then prepare the dough (20 minutes), add the toppings (20
minutes), pop it in the oven, watch while it cooks (20 minutes), and serve to the
customer. The process takes one hour; you’re then free to take another order.

Asynchronous Programming in Node.js 162

9-1. A single-chef restaurant

To make your restaurant more efficient, you hire three chefs: one to make
dough, one to add toppings, and one to bake. The chefs are in different
kitchens and can’t talk to each other, but they’ll report back to you when their
specific task is complete.

9-2. A multiple-chef restaurant

It still takes an hour to create one pizza (although the three chefs together can
prepare three pizzas every hour). What’s important is that you’re no longer
involved in the cooking process. You’re passing instructions to chefs and
receiving an alert when they’ve completed their job. You’re free to take
customer orders whenever they arrive.

163 Node.js: Novice to Ninja

Both JavaScript and Node.js are single-threaded: the runtime can only do one
thing at a time. It would be like a restaurant with a single chef, except
JavaScript offloads input and output operations to the operating system
kernel (other “chefs” who operate in parallel). A Node.js app may start a file
write, database read, or HTTP request, but it won’t wait for that operation to
finish. Instead, it asks for a callback function to be run when it’s complete and
success or error data is available.

input

output

read file

Node.js

query databaseHTTP request
9-3. Node.js I/O

Callbacks in Action

Consider this PHP code to write text to a file:

<?php
echo 'saving file';
$err = file_put_contents('file.txt', 'Hello from PHP');
if ($err !== false) echo 'file saved';
echo 'processing complete';
?>

The program outputs this:

saving file
file saved
processing complete

The PHP interpreter processes the file_put_contents() statement and waits

Asynchronous Programming in Node.js 164

https://www.php.net/manual/function.file-put-contents.php

until the file is fully written before progressing to the next command.

This is the equivalent code in Node.js:

import { writeFile } from 'fs';

console.log('saving file');
writeFile('file.txt', 'Hello Node.js', 'utf8', err => {
if (!err) console.log('file saved');

});
console.log('processing complete');

The program outputs this:

saving file
processing complete
file saved

Processing completes before the file saves!

The fourth argument passed to writeFile() is an anonymous ES6 callback
function with a single err parameter. The callback runs when the file has
saved (or fails to save and raises an error passed in err). File saving may only
take a few milliseconds, but it runs in the background, so the 'processing

complete' command executes immediately.

Asynchronous callbacks are at the heart of all client-side and server-side
JavaScript applications.

It’s standard practice to handle errors and return an error object or string
message as the first argument to a callback function (like err above). When
no error occurs, the callback’s first parameter should be null , undefined or
any other falsy value.

The Event Loop

Why does the Node.js program above continue to run after the last line has

165 Node.js: Novice to Ninja

https://nodejs.org/dist/latest/docs/api/fs.html#fswritefilefile-data-options-callback

executed?

All Node.js applications initialize an event loop. Once the last statement
completes execution, Node.js loops back and checks for any outstanding:

timers (such as setTimeout)
pending callbacks
polling data connections

These are run in the order they’re received (know as “first in, first out”, or
FIFO).

A seemingly idle application won’t end if it’s waiting for something to
complete or if something could occur at a future point (such as a server
listen on a specific port).

Callback Conundrums

Using callbacks in asynchronous functions isn’t always easy. Your code can
look correct and run without errors, but it eventually causes the Node.js
runtime to crash.

Two severe issues are:

failing to terminate an asynchronous function after a callback

Avoid Blocking the Event Loop

Long-running JavaScript calculations or processes block the event

loop and delay the processing of incoming requests. Process-

intensive tasks should either be:

split into smaller sub-tasks with timers
run in the background using a worker thread or a child process (options
that are discussed in Chapter 12).

Asynchronous Programming in Node.js 166

https://developer.mozilla.org/Web/API/setTimeout
https://nodejs.org/dist/latest/docs/api/worker_threads.html
https://nodejs.org/dist/latest/docs/api/child_process.html

accidentally making an asynchronous function synchronous

These are best explained with examples. Consider this simple asynchronous
function which waits for ms milliseconds:

// wait for ms milliseconds
function wait(ms, callback) {

setTimeout(callback, ms);

}

// wait for one second
wait(1000, () => {
console.log('waited 1000ms');

});

Let’s improve the function by returning the following arguments to the
callback:

an error when ms is not a number, less than 1, or more than 3000
the value of ms waited

Our initial implementation:

// wait for ms milliseconds
function wait(ms, callback) {

ms = parseFloat(ms);

// invalid ms value?
if (!ms || ms < 1 || ms > 3000) {

const err = new RangeError('Invalid ms value');
callback(err, ms);

}

// wait ms before callback

167 Node.js: Novice to Ninja

setTimeout(callback, ms, null, ms);

}

// call wait
wait(500, (err, ms) => {

if (err) console.log(err);
else console.log(`waited ${ ms }ms`);

});

Execution returns the expected waited 500ms result.

9-4. Wait callback—500ms

However, what happens when we pass an invalid ms value such as 0 ?

9-5. Wait callback—0ms

Asynchronous Programming in Node.js 168

We get the error we expected, but the setTimeout also runs and we see
waited 0ms . The callback function executes twice, because the function

didn’t terminate when the error occurred. We can solve this by putting the
setTimeout in an else statement or adding a return in the error condition:

// wait for ms milliseconds
function wait(ms, callback) {

ms = parseFloat(ms);

// invalid ms value?
if (!ms || ms < 1 || ms > 3000) {

const err = new RangeError('Invalid ms value');
callback(err, ms);
return; // terminate function

}

// wait ms before callback
setTimeout(callback, ms, null, ms);

}

There’s another, subtler issue: the callback runs immediately when an error is
raised. At that point, the function is no longer asynchronous—it’s synchronous.
It won’t cause an obvious problem here, but it can lead to memory leaks in
larger, long-running Node.js applications. Your app will eventually crash with an
obscure “memory overflow” error message.

A simple way to solve this is the setImmediate() timer. This calls a function
during the next iteration of the event loop:

A Function Must be 100% Synchronous or 100%

Asynchronous

No path through an asynchronous function should ever lead to a

callback being run immediately.

169 Node.js: Novice to Ninja

https://nodejs.org/dist/latest/docs/api/timers.html#setimmediatecallback-args

// wait for ms milliseconds
function wait(ms, callback) {

ms = parseFloat(ms);

// invalid ms value?
if (!ms || ms < 1 || ms > 3000) {

const err = new RangeError('Invalid ms value');
setImmediate(callback, err, ms);
return;

}

// wait ms before callback
setTimeout(callback, ms, null, ms);

}

Callback Hell

In complex Node.js applications, you’ll often make a series of asynchronous
function calls—such as when fetching something from a database, making an
API call, loading a file, and so on. A callback may be used in one place only, so it
makes sense to declare an inline anonymous function. This can quickly
descend into deeply nested callback hell:

wait(100, (err) => {

process.nextTick()

You may see process.nextTick(callback) used in some

applications. This works similarly to setImmediate() , except that

the callback runs before the end of the current iteration of the

event loop. This can cause the event loop to never restart if

nextTick() is recursively called.

Asynchronous Programming in Node.js 170

https://nodejs.org/dist/latest/docs/api/process.html#processnexttickcallback-args

console.log('wait 1');

wait(200, (err) => {

console.log('wait 2');

wait(300, (err) => {
console.log('wait 3');

});

});
});

There are syntactical ways to flatten this structure, typically by naming each
function and ensuring each calls others in turn. Fortunately, the JavaScript
gods addressed the problem with promises.

Promises

A Promise object represents the eventual completion or failure of an
asynchronous operation with its resulting value. Promises provide a clearer
syntax that makes it easier to chain asynchronous calls that run in series.
Developers can also avoid the callback issues raised in the previous sections.

Promises were introduced in ES6/2015 and are syntactical sugar; callbacks
are still used under the hood. To make a function asynchronous, a Promise

object must be returned immediately. The Promise constructor is passed two
callback functions as parameters:

resolve : the function that’s run when processing successfully completes
reject : the function that’s run when an error occurs

In the case of our wait() function, it can be rewritten to return a promise that
calls resolve(ms) after the timeout or reject(error) when an invalid ms

parameter is passed:

// wait for ms milliseconds

171 Node.js: Novice to Ninja

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise

function pWait(ms) {

ms = parseFloat(ms);

return new Promise((resolve, reject) => {

if (!ms || ms < 1 || ms > 3000) {
reject(new RangeError('Invalid ms value'));

}
else {
setTimeout(resolve, ms, ms);

}

});

}

Anything that returns a promise can have:

a then() method, which is passed a function that takes the result from the
previous resolve()

a catch() method, which is passed a function that runs when an error is
returned from any reject()

a finally() method, which is called at the end regardless

pWait(100)

util.promisify()

util.promisify() converts any callback-based function with an

error as the ?rst argument into a promise. Rather than re-writing

wait() , you could create a promisi?ed alternative named

pWait() :

import { promisify } from 'util';
const pWait = promisify(wait);

Asynchronous Programming in Node.js 172

https://nodejs.org/dist/latest/docs/api/util.html#utilpromisifyoriginal

.then(ms => console.log(`waited ${ ms }ms`));

.catch(err => console.log(err))

.finally(() => console.log('all done'))

Each .then() function can return a value or another promise so that
sequential asynchronous function calls can be chained. For example:

pWait(100)
.then(ms => {
console.log(`waited ${ ms }ms`);
return pWait(ms + 100);

})
.then(ms => {
console.log(`waited ${ ms }ms`);
return pWait(ms + 100);

})
.then(ms => {
console.log(`waited ${ ms }ms`);

})
.catch(err => {
console.log(err);

});

9-6. A promise call chain

173 Node.js: Novice to Ninja

Parallel Promises

The example above executes each asynchronous function call one after the
other. This is only necessary if the result from one function is required as input
for the next.

You’ll often encounter situations when several asynchronous functions are
required but they aren’t related to each other. For example, given a book ID,
such as an ISBN, you want to:

retrieve book information such as the title, author, etc. from a local
database (getBook(ID))
call a stock control system API to determine how may of those books are
available (getStock(ID))
get the latest recommended retail price from the publisher (getPrice(ID))

Assume each function returns a promise where resolve() returns an
information object.

The following promise chain works but is inefficient, because each call occurs
one after the other:

// book data object
const bookData = { id: 123 };

getBook(bookData.id)

.then(book => {

then() Functions Are Promisified

The ?nal then() in the code above runs a synchronous function,

but JavaScript automatically converts it into a promise-based

asynchronous function so you can append further then() methods

when necessary.

Asynchronous Programming in Node.js 174

https://www.isbn-international.org/

bookData.title = book.title;
bookData.author = book.author;
bookData.description = book.description;
getStock(bookData.id);

})

.then(stock => {
bookData.stock = stock;
getPrice(bookData.id);

})

.then(price => {
bookData.price = price;

})

.catch(err => {
console.log(err);

})

A better option is Promise.all() , which takes an array of promises, runs each
in parallel, and returns a new outer promise where resolve() returns an array
of output values in the same order. This code is as fast as the slowest function:

// book data object
const bookData = { id: 123 };

Promise.all([
getBook(bookData.id),
getStock(bookData.id),
getPrice(bookData.id)

])

.then(result => {

bookData.title = result[0].title;
bookData.author = result[0].author;
bookData.description = result[0].description;
bookData.stock = result[1];
bookData.price = result[2];

})

175 Node.js: Novice to Ninja

https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Promise/all

.catch(err => {
console.log(err);

})

The .catch() is triggered whenever a single promise reject() runs, so any
pending promises are aborted.

Similar options include:

Promise.allSettled()

Runs all promises in the array and waits until every one has resolved or
rejected. Each item in the returned array is an object with a .status

property (either 'fulfilled' or 'rejected') and a .value property with
the returned value.

Promise.any()

Runs all promises in the array but resolves as soon as the first promise
resolves. A single value is returned.

Promise.race()

Runs all promises in the array but resolves or rejects as soon as the first
promise resolves or rejects. A single value is returned.

Promising Problems

Promises help prevent callback hell, but I found them confusing at first, and
it’s easy to mangle the .then() / .catch() chain syntax. You should also note
that the whole promise chain is asynchronous, so any function using a series
of promises should return its own promise (or it could run a callback to
confuse other developers!)

Asynchronous Programming in Node.js 176

https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Promise/allSettled
https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Promise/any
https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Promise/race

async/await
ES2017 introduced the async and await keywords, which enable
asynchronous, promise-based behavior to be written in a cleaner and clearer
syntax. Again, they’re more syntactical sugar, but they make promises
sweeter.

A promise chain to make three successive pWait() calls is long and difficult
to read:

pWait(100)
.then(ms => {
console.log(`waited ${ ms }ms`);
return pWait(ms + 100);

})
.then(ms => {
console.log(`waited ${ ms }ms`);
return pWait(ms + 100);

})
.then(ms => {
console.log(`waited ${ ms }ms`);

})
.catch(err => {
console.log(err);

});

This is the equivalent code using await :

try {

const p1 = await pWait(100);
console.log(`waited ${ p1 }ms`);

const p2 = await pWait(p1 + 100);
console.log(`waited ${ p2 }ms`);

const p3 = await pWait(p2 + 100);
console.log(`waited ${ p3 }ms`);

}

177 Node.js: Novice to Ninja

catch(err) {
console.log(err);

}

Put the await keyword before any promise-based asynchronous function
and the JavaScript interpreter will appear to wait until it’s resolved or rejected.
The syntax is cleaner and looks much like a series of synchronous function
calls.

The code above is a top-level await because it’s not contained in a function.
This works in ES2015 modules, but not in CommonJS, where you must wrap it
in an asynchronous immediately invoked function expression (IIFE):

(async () => {

try {

const p1 = await pWait(100);
console.log(`waited ${ p1 }ms`);

const p2 = await pWait(p1 + 100);
console.log(`waited ${ p2 }ms`);

const p3 = await pWait(p2 + 100);
console.log(`waited ${ p3 }ms`);

}
catch(err) {
console.log(err);

}

})();

Any function that contains one or more await statements must have async

prepended to indicate it’s asynchronous. In effect, this turns it into a promise-
based function:

// async function
async function waitSeries(ms) {

Asynchronous Programming in Node.js 178

try {

const p1 = await pWait(ms);
console.log(`waited ${ p1 }ms`);

const p2 = await pWait(p1 + 100);
console.log(`waited ${ p2 }ms`);

const p3 = await pWait(p2 + 100);
console.log(`waited ${ p3 }ms`);

}
catch(err) {
console.log(err);

}

}

// top-level await to run the async function
await waitSeries(100);

Promise.all() is Still Necessary

There’s no async / await equivalent for Promise.all() and similar functions.
However, async functions return a promise, so they can be passed in the
processing array.

try/catch is Ugly

async functions silently exit if you omit try / catch and the current await is
rejected. Unless you can examine the error type, it’s not possible to know
which await triggered the problem, so multiple try / catch blocks may be
necessary.

You could consider using a higher-order function to catch errors when they
can be processed in the same way. For example:

179 Node.js: Novice to Ninja

// async function
async function waitSeries(ms) {

const p1 = await pWait(ms);
console.log(`waited ${ p1 }ms`);

const p2 = await pWait(p1 + 100);
console.log(`waited ${ p2 }ms`);

const p3 = await pWait(p2 + 100);
console.log(`waited ${ p3 }ms`);

}

// higher-order function handle errors
function catchErrors(fn) {
return function(...args) {
return fn(...args).catch(err => {
console.log('ERROR', err);

});
}

}

// top-level await
await catchErrors(waitSeries)(100);

Whether this results in more readable code is another matter.

Asynchronous Awaits in Synchronous Loops

Be wary about using await in looping methods such as forEach() , which are
passed a function. Loops are synchronous and continue to run even when the
function they call is asynchronous. Consider this example:

const ms = [100, 200, 300];
let totalWait = 0;

ms.forEach(async i => {

console.log(i);
const w = await pWait(i);
console.log(`waited ${ w }ms`);

Asynchronous Programming in Node.js 180

totalWait += w;
});

console.log(`total wait time: ${ totalWait }ms`);

You might expect to see the following output:

100
waited 100ms
200
waited 200ms
300
waited 300ms
total wait time: 600ms

The actual result is surprising, as pictured below.

9-7. The await loop output

Each iteration of the loop won’t await until it’s complete. This will be a
problem if the result of one await is required in the next call.

Standard for(), while() and async iterator loops may be necessary. The code
above can be fixed with this:

181 Node.js: Novice to Ninja

https://developer.mozilla.org/docs/Web/JavaScript/Reference/Statements/for
https://developer.mozilla.org/docs/Web/JavaScript/Reference/Statements/while
https://developer.mozilla.org/docs/Web/JavaScript/Reference/Statements/for-await...of

const ms = [100, 200, 300];
let totalWait = 0;

for (let i = 0; i < ms.length; i++) {

console.log(ms[i]);
const w = await pWait(ms[i]);
console.log(`waited ${ w }ms`);
totalWait += w;

}

console.log(`total wait time: ${ totalWait }ms`);

The result is pictured below.

9-8. The await loop fix

Exercises

Write a small application that fetches three random questions from the Open
Trivia Database using the following REST URL requests:

General knowledge:

https://opentdb.com/api.php?type=multiple&amount=1&category=9

Asynchronous Programming in Node.js 182

https://opentdb.com/
https://opentdb.com/
https://opentdb.com/api.php?type=multiple&amount=1&category=9

Computers:

https://opentdb.com/api.php?type=multiple&amount=1&category=18

Gadgets:

https://opentdb.com/api.php?type=multiple&amount=1&category=30

Format the question data into a single array and output it in JSON format into a
file named questions.json .

For bonus points, make your application more efficient by running all URL
requests in parallel.

This chapter’s video demonstrates a solution.

Summary

Asynchronous programming takes some time to understand and will catch
you out. The following tips will help you write more robust Node.js
applications.

Ensure JavaScript functions run quickly and don’t block the event loop.
Pass callback functions to an asynchronous function so they can be called
when an operation is complete.
The first argument of the callback function must be an error object or
string message.
Always ensure a function return occurs after a callback runs.
An asynchronous function must be 100% asynchronous: no path should

HTTP Requests

Unless you’re using Node.js 18 or above, which offers a native

Fetch() API, you’ll need use a third-party HTTP request module

such as node-fetch .

183 Node.js: Novice to Ninja

https://opentdb.com/api.php?type=multiple&amount=1&category=18
https://opentdb.com/api.php?type=multiple&amount=1&category=30
https://www.npmjs.com/package/node-fetch
https://vimeo.com/707853188/418897e1b3

lead to an immediate callback. Pass a callback to setImmediate() to run it
during the next iteration of the event loop if necessary.
Learn how to create your own promise functions or create them from a
callback-based function using util.promisify() .
You can await for a promise to complete inside an async function.
Where possible, run promises in parallel using options such as
Promise.all() or Promise.allSettled() .

Useful links:

The Node.js event loop
Don’t block the event loop (or the worker pool)
MDN promise documentation
MDN async and await

The “Promises” and “Async functions” sections of Chapter 11, JavaScript:
Novice to Ninja
Chapters 8 and 9 of JavaScript: The New Toys

Quiz

1. A callback function:

a. runs before an operation starts
b. calls an asynchronous function
c. is called when an asynchronous operation completes
d. all of the above

2. An asynchronous function:

a. completes at a later time
b. allows subsequent JavaScript commands to be executed
c. can be implemented with callbacks, promises, or async

d. all of the above

3. The Node.js event loop:

Asynchronous Programming in Node.js 184

https://nodejs.org/dist/latest/docs/api/timers.html#setimmediatecallback-args
https://nodejs.org/dist/latest/docs/api/util.html#utilpromisifyoriginal
https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Promise/all
https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Promise/allSettled
https://nodejs.org/en/docs/guides/event-loop-timers-and-nexttick/
https://nodejs.org/en/docs/guides/dont-block-the-event-loop/
https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/docs/Web/JavaScript/Reference/Statements/async_function
https://developer.mozilla.org/docs/Web/JavaScript/Reference/Operators/await
https://www.sitepoint.com/premium/books/javascript-novice-to-ninja-2nd-edition
https://www.sitepoint.com/premium/books/javascript-novice-to-ninja-2nd-edition
https://www.sitepoint.com/premium/books/javascript-the-new-toys

a. reruns when there are outstanding timers or callbacks
b. runs asynchronous functions
c. is another name for callbacks
d. none of the above

4. A Promise object completes by running:

a. a resolve or reject function
b. a fulfilled or error function
c. a resolve or error function
d. a fulfilled or reject function

5. An async function:

a. can call promise-based functions using await

b. returns a promise
c. uses try / catch blocks to handle errors
d. all of the above

185 Node.js: Novice to Ninja

Using
Database

Storage

Chapter

10

Using Database Storage 186

The previous chapters explained programming practices that affect all
Node.js applications. This chapter applies these fundamentals to the specific
challenge of data storage using database solutions such as MongoDB and
MySQL.

Web applications often require data that persists between page loads and
application restarts. Consider a content management system such as
WordPress: it stores articles, metadata, media, user profiles, comments,
settings, plugin configurations, and more. Multiple users can log in at any time
to view and update content.

The most common solution to data persistence is a database such as
MongoDB, MySQL, or PostgreSQL. All database systems have the same
purpose: to provide the ability to store and query data fast and frequently.
They differ in how they achieve those goals.

A Database-driven Web Application Example

The sections below explain how to create a web page hit counter service. Your
grandparents will tell you how popular they were in the 1990s.

Skip Ahead?

Databases may not be the most exciting topic, but it’s one of the

most signi?cant differences between frontend and backend

engineering. You can skip sections about speci?c systems, but the

following chapters will be more dif?cult to understand without

some database knowledge.

187 Node.js: Novice to Ninja

https://www.mongodb.com/
https://www.mysql.com/
https://www.postgresql.org/

1

2

3

4

10-1. A web page hit counter

A page using this service includes an image:

(Note that the referrerpolicy is required in modern browsers so they send
referral information in the HTTP header.)

The image is returned from a Node.js Express application, which:

Extracts the page URL from the request’s referer HTTP header.

Cleans and transforms the URL to a 32-character hash using the MD5

algorithm. All URLs therefore resolve to a 32-character string no matter how

long they are. (In theory, two different URLs could generate the same hash,

but it’s unlikely to occur for a few billion years.)

Stores the hash in a new database record with the user’s IP address,

user agent string, and current date/time.

Counts all references to the hash in the database.

Using Database Storage 188

https://en.wikipedia.org/wiki/MD5
https://en.wikipedia.org/wiki/MD5

5

1

2

3

Generates and returns an SVG image with that count.

Three applications are provided in the code directory:

A MongoDB version (see the “MongoDB” section below) using the native

mongodb driver.

A MySQL version (see the “MySQL” section below) using the native

mysql2 driver.

A Sequelize ORM version (see the “Sequelize ORM” section below). This

also connects to a MySQL database using mysql2 , but you don’t use it

directly.

All three use the same Node.js code except for a lib/pagehit.js file, which
communicates with a specific database to add and query records.

It’s impossible to describe every option in every database, but this example
code provides a head start when developing your own applications.

Installing and Con!guring Database Software

You can download, install, and configure MySQL, MongoDB, or any other
database on Linux, macOS, and Windows. That’s beyond the scope of this
course, so prepare yourself for several hours of effort.

An easier option is Docker. This is often shrouded in mystery, but Docker
provides a way to download, install, and configure pre-built applications in
minutes. Install Docker on your system, then follow the steps below to run
MySQL, MongoDB, and the Adminer database client. The page hit service runs
as a Node.js application on your device that connects to this database.

189 Node.js: Novice to Ninja

https://github.com/spbooks/ultimatenode1/tree/main/ch10
https://www.npmjs.com/package/mongodb
https://www.npmjs.com/package/mysql2
https://www.npmjs.com/package/mysql2
https://www.docker.com/
https://dockerwebdev.com/tutorials/install-docker/
https://www.adminer.org/

MongoDB

MongoDB is a popular NoSQL database that became associated with Node.js
in the same way MySQL is often paired with PHP. MongoDB groups JSON-like
documents into one or more collections (analogous to tables) and implements
querying with JavaScript-like objects.

NoSQL has become a catch-all term for any database that doesn’t follow SQL
conventions (see the “MySQL” section below). In general, NoSQL databases
implement fewer rules. Repeated (denormalized) data is encouraged, and
there’s no need to define data structures, defaults, constraints, or
relationships.

NoSQL software and storage mechanisms vary. Some offer basic key–value
pairs. Some use JSON documents. Others are use-case specific, such as Redis
for in-memory caching, and Elasticsearch for search-engine indexing.

A NoSQL database can be practical when data is more organic and
relationships are looser. Consider an address book storing telephone numbers
for individual contacts:

You could allocate a single telephone field in an SQL database, but it’s too
restrictive: contacts may have home, work, and mobile numbers. Allocating
three telephone fields would be wasteful for some contacts, but not
enough for others. A separate telephone table is the most flexible option,
but this increases complexity.

In a NoSQL database, telephone numbers can be defined as an unlimited
array of objects associated with a contact. For example:

{
"firstName": "Contact",
"lastName": "One",
"telephone": [

{ "home": "1-01234567890" },

Using Database Storage 190

https://www.mongodb.com/
https://redis.io/
https://www.elastic.co/

{ "work": "2-01234567890" },
{ "iPhone": "3-01234567890" },
{ "Android phone": "4-01234567890" },
{ "Test phone": "5-01234567890" }

]
}

Start the MongoDB Application

To use the MongoDB-based application, navigate to the pagehit-mongodb

directory and start MongoDB and the Adminer client with docker-compose up .

In another terminal, install the Node.js express , mongodb , and dotenv

dependencies referenced in package.json :

npm install

Then start the page hit application:

npm start

Finally, start a web server in another terminal so you can load test pages:

Your Own MongoDB Installation?

Database con?guration parameters are de?ned in the project’s

.env ?le. It con?gures Docker, and the Node.js application reads it

using the dotenv module.

If you’re using your own installation of MongoDB, edit the .env ?le

and change the con?guration parameters accordingly. In most

cases, only the root user’s password need be changed

(MONGO_INITDB_ROOT_PASSWORD).

191 Node.js: Novice to Ninja

https://www.npmjs.com/package/dotenv
https://www.npmjs.com/package/express
https://www.npmjs.com/package/mongodb
https://www.npmjs.com/package/dotenv

npx small-static-server 8888 ./test

You now have four services running:

the MongoDB database at http://localhost:27017

the Adminer database client at http://localhost:8080/

the page hit service at http://localhost:8001/

a test page web server at http://localhost:8888/

Different ports can be defined in the .env file if you have clashes.

Visit http://localhost:8888/page1.html or http://localhost:8888/page2.html to
view page counters. Refresh and watch the counter increase.

You can examine the database data using the Adminer panels at
http://localhost:8080/. Log on with the credentials specified in .env :

System: MongoDB
Server: host.docker.internal (or your network IP address if not using
Docker Desktop)
Username: root
Password: rootuserpw
Database: pagehitmongo

Using Database Storage 192

http://localhost:8888/page1.html
http://localhost:8888/page2.html
http://localhost:8080/

10-2. Adminer login

Click the hit collection followed by Select data.

193 Node.js: Novice to Ninja

10-3. Adminer data

View this chapter’s video to see the code in action.

MongoDB Functionality

The lib/pagehit.js file handles all MongoDB functionality. It loads the
required modules and extracts the configuration parameters from the .env

file using the dotenv module:

import dotenv from 'dotenv';
import { MongoClient } from 'mongodb';
import httpReferrer from './httpreferrer.js';

// load .env configuration

Using Database Storage 194

https://vimeo.com/707853300/f72d657727
https://www.npmjs.com/package/dotenv

dotenv.config();

You require a Node.js package to communicate with a database. These are
often referred to as database clients, connectors, or drivers, and the
MongoDB native driver is used here. It provides low-level methods to
construct and execute any MongoDB command.

A connection string is passed to the MongoClient driver constructor, which
sets the database user’s name, password, host, and port. The asynchronous
.connect() method is called to establish a connection:

// connect to MongoDB
const client = new MongoClient(
`mongodb://${ process.env.MONGO_INITDB_ROOT_USERNAME }:${ process.env.MONGO_
➥INITDB_ROOT_PASSWORD }@${ process.env.MONGO_INITDB_HOST }:${ process.env.
➥MONGO_INITDB_PORT }/`,
{ useNewUrlParser: true, useUnifiedTopology: true }

);

await client.connect();

The code then connects to a specific database (pagehitmongo) and
references a hit collection for later use (a collection is a group of similar
JSON-like documents):

const
db = client.db(process.env.MONGO_INITDB_DATABASE),
hit = db.collection('hit');

MongoDB allows you to arbitrarily add data to a document in a collection
without describing that data up front (although it’s possible to define a
schema so you can benefit from data validation). However, you should index
regularly queried values to make searches faster and more efficient.

195 Node.js: Novice to Ninja

https://www.npmjs.com/package/mongodb

The hit collection has an index created on the URL hash and time . This
runs every time the application starts, but is ignored after the first attempt:

// add collection index
await hit.createIndex({ hash: 1, time: 1 });

lib/pagehit.js exports a single default asynchronous function. It generates
a hash from the referring page’s URL, but returns null when no referrer is
found:

// count handler
export default async function(req) {

// hash of referring URL
const hash = httpReferrer(req);

// no referrer?
if (!hash) return null;

The browser’s IP address (ip), user agent (ua), and access time (time) are

What Is a Database Index?

An index is a list of the data in one or more ?elds in a speci?c

order—much like the index in a book. For example, you could have a

number of user records created as each person registers. When

someone logs in, you must locate a user’s record by their email

address:

Without an index, the database must search through every user

record one by one until the correct email is found.
With an index on the email field in ascending alphabetical order, the

database can locate a matching record far faster.

Indexes should be used on ?elds that you frequently query. It’s

tempting to create indexes on every ?eld, but the more you add, the

longer it takes to write new records and update all indexes.

Using Database Storage 196

then determined:

// fetch browser IP address and user agent
const
ipRe = req.ip.match(/(?:\d{1,3}\.){3}\d{1,3}/),
ip = ipRe?.[0] || null,
ua = req.get('User-Agent') || null,
time = new Date();

This data is added as a new document into the hit collection using the
insertOne() method. By default, all MongoDB documents also have a unique
_id added to every document:

try {

// store page hit
await hit.insertOne({ hash, ip, ua, time });

A count of all documents with the same hash is then returned:

// fetch page hit count
return await hit.countDocuments({ hash });

An error is thrown if any database operation fails:

}
catch (err) {
throw new Error('DB error', { cause: err });

}

}

The main index.js script loads this module:

import pagehit from './lib/pagehit.js';

It uses it within a middleware function that sets req.count to the returned
page count. This is available to subsequent (next()) middleware functions,

197 Node.js: Novice to Ninja

https://docs.mongodb.com/manual/reference/method/db.collection.insertOne/

but any error terminates the request immediately:

// page hit count middleware
app.use(async (req, res, next) => {

try {
req.count = await pagehit(req);

if (req.count) {
next();

}
else {
res.status(400).send('No referrer');

}

}
catch(err) {
res.status(503).send('Pagehit service down');

}

});

A single /hit.svg route is defined, which returns an SVG image containing
the req.count value:

// SVG counter response
app.get('/hit.svg', (req, res) => {

res
.set('Content-Type', 'image/svg+xml')
.send(`<svg xmlns="http://www.w3.org/2000/svg" width="${ String(req.count).
➥length * 0.6 }em" height="1em"><text x="50%" y="75%" font-family=
➥"sans-serif" font-size="1em" text-anchor="middle" dominant-baseline=
➥"middle">${ req.count }</text></svg>`);

});

The response ends once the SVG is returned to the calling browser.

Using Database Storage 198

Stop the MongoDB Application

Stop both the Node.js page hit application and test page server by pressing
Ctrl | Cmd + C in their terminals. From the same project directory, stop the

MongoDB database and Adminer client with docker-compose down .

MySQL

MySQL is a popular SQL database. SQL (Structured Query Language) is a
standard for managing data in a relational database management system
(RDBMS). Data is stored in tables and should ideally be defined in one place
without duplication (known as normalization).

Consider a book store inventory. Each book has an ID, title, author, and
publisher, and is added as a new row (record) to a book table:

id title author publisher

1 Introduction to Node.js Craig Buckler SitePoint

2 Jump Start Web Performance Craig Buckler SitePoint

3 DevTool Secrets Craig Buckler SitePoint

4 Learn to Code with JavaScript Darren Jones SitePoint

An author and publisher can have more than one book. Rather than repeat the
same values, it’s more practical to create author and publisher tables
where each record has a unique ID.

Here’s the author table:

id name country

2 Craig Buckler UK

3 Darren Jones UK

199 Node.js: Novice to Ninja

https://www.mysql.com/

Here’s the publisher table:

id name country

1 SitePoint AU

You can reference those IDs in the book table:

id title author_id publisher_id

1 Introduction to Node.js 2 1

2 Jump Start Web Performance 2 1

3 DevTool Secrets 2 1

4 Learn to Code with JavaScript 3 1

If a publisher changes their name or address, you can update the data in the
publisher table without affecting related book records.

A brief overview of SQL:

Database table structures must be defined before data can be stored.
SQL offers simple declarative CRUD operations such as INSERT , SELECT ,
UPDATE , and DELETE , but is powerful enough for complex operations.

Queries can JOIN tables to examine related data in a single command.
Data integrity and relationships can be enforced. For example, it becomes
impossible to delete an author if they have one or more books.
Most systems can wrap multiple updates into a single transaction. If one
operation fails, the data rolls back to the state before the first update.
SQL is a fairly loose standard. Similar syntaxes are implemented across
relational database management systems, but features and syntax can
differ.
SQL was initially devised in the early 1970s, so software, tools,
documentation, and resources are plentiful.

Using Database Storage 200

Other popular SQL databases include MariaDB, PostgreSQL, SQLite,
Microsoft SQL Server, and Oracle.

Start the MySQL Application

To use the MySQL-based application, navigate to the pagehit-mysql directory
and start MySQL and the Adminer client with docker-compose up .

In another terminal, install the Node.js express , mysql2 , and dotenv

dependencies referenced in package.json :

npm install

Then start the page hit application:

npm start

Finally, start a web server in another terminal so you can load test pages:

Your Own MySQL Installation?

As before, database con?guration parameters are de?ned in the

project .env ?le, which you can edit if you’re using your own

MySQL installation.

Docker automatically runs the mysql/init.sql script to initialize

the database tables and indexes. You must run this manually before

starting the Node.js application, either by running it in a MySQL

client or using the terminal command:

mysql -h localhost -u pagehituser pagehitmysql < mysql/init.sql

(Change the host, user, or database names as necessary.)

201 Node.js: Novice to Ninja

https://mariadb.org/
https://www.postgresql.org/
https://www.sqlite.org/
https://www.microsoft.com/sql-server/
https://www.oracle.com/database/
https://www.npmjs.com/package/express
https://www.npmjs.com/package/mysql2
https://www.npmjs.com/package/dotenv

npx small-static-server 8888 ./test

You now have four services running:

the MySQL database at http://localhost:3306

the Adminer database client at http://localhost:8080/

the page hit service at http://localhost:8001/

a test page web server at http://localhost:8888/

Different ports can be defined in the .env file if you have clashes.

Visit http://localhost:8888/page1.html or http://localhost:8888/page2.html to
view page counters. Refresh and watch the counter increase.

You can examine the database data using the Adminer panels at
http://localhost:8080/. Log on with the credentials specified in .env :

System: MySQL
Server: host.docker.internal (or your network IP address if not using
Docker Desktop)
Username: pagehituser
Password: pagehitpw
Database: pagehitmysql

Using Database Storage 202

http://localhost:8888/page1.html
http://localhost:8888/page2.html
http://localhost:8080/

10-4. Adminer login

Then click select next to the hit table.

203 Node.js: Novice to Ninja

10-5. Adminer data

MySQL Functionality

You can’t store data in an SQL RDBMS until the data structure (its schema) is
defined. The MySQL database schema is defined in mysql/init.sql , which
runs automatically when using Docker:

-- MySQL database initialization
USE pagehitmysql;

CREATE TABLE IF NOT EXISTS hit (
id bigint unsigned NOT NULL AUTO_INCREMENT COMMENT 'record ID',
hash binary(16) NOT NULL COMMENT 'URL hash',
ip int(4) unsigned DEFAULT NULL COMMENT 'client IP address',
ua varchar(200) DEFAULT NULL COMMENT 'client useragent string',
time timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP COMMENT 'hit time',
PRIMARY KEY (id),
KEY hash_time (hash, time)

) ENGINE=InnoDB DEFAULT CHARSET=utf8 COMMENT='page hits';

Using Database Storage 204

The lib/pagehit.js file handles all MySQL functionality. It loads the required
modules and extracts the configuration parameters from the .env file using
the dotenv module:

import dotenv from 'dotenv';
import mysqlPromise from 'mysql2/promise';
import httpReferrer from './httpreferrer.js';

// load .env configuration
dotenv.config();

The mysql2 driver has been chosen for MySQL communication. It provides
promise-based, low-level methods to construct and execute any SQL
command.

A MySQL connection pool is configured using defaults from the .env file.
Connection pools reduce the time spent connecting to a MySQL server by
reusing previous connections:

// connect to MySQL
const db = await mysqlPromise.createPool({
host: process.env.MYSQL_HOST,
port: process.env.MYSQL_PORT,
database: process.env.MYSQL_DATABASE,
user: process.env.MYSQL_USER,
password: process.env.MYSQL_PASSWORD,
waitForConnections: true,
connectionLimit: 10,
queueLimit: 0

});

Like before, lib/pagehit.js exports a single default asynchronous function.
It generates a hash from the referring page’s URL, returns when no referrer is
found, and determines the browser’s IP address (ip), and user agent (ua):

// count handler
export default async function(req) {

205 Node.js: Novice to Ninja

https://www.npmjs.com/package/dotenv
https://www.npmjs.com/package/mysql2

// hash of referring URL
const hash = httpReferrer(req);

// no referrer?
if (!hash) return null;

// fetch browser IP address and user agent
const
ipRe = req.ip.match(/(?:\d{1,3}\.){3}\d{1,3}/),
ip = ipRe?.[0] || null,
ua = req.get('User-Agent') || null;

The data is added as a new record into the hit table by executing an SQL
INSERT statement:

try {

// store page hit
await db.execute(
'INSERT INTO `hit` (hash, ip, ua) VALUES (UNHEX(?), INET_ATON(?), ?);',
[hash, ip, ua]

);

This is an example of a prepared statement, where each ? character is
substituted by an associated (and escaped) value in the array.

No Time?

The time of record insertion is automatically handled by MySQL,

which sets the CURRENT_TIMESTAMP by default.

Using Database Storage 206

https://dev.mysql.com/doc/refman/en/insert.html

A count of all records with the same hash is then returned:

// fetch page hit count
const [res] = await db.query(
'SELECT COUNT(1) AS `count` FROM `hit` WHERE hash = UNHEX(?);',
[hash]

UNHEX? INET_ANON?

A couple of MySQL-speci?c functions are used in the SQL

statement above to make smaller, more ef?cient numeric ?elds that

use less space and are quicker to search:

UNHEX() converts the 32-character hash string to a binary value.

INET_ATON() converts a dotted-quad IPv4 network address string to

an integer.

Never Build SQL Strings!

Never programmatically build SQL strings. This is the biggest cause

of SQL injection attacks:

b.execute(`SELECT * FROM user WHERE email='${ email }' AND
➥password='${ password }';`);

A user could enter the email address: boss@company.com'; -- . This

comments out the password check, so anyone can log in as the

boss!

A more dangerous example would wipe the user table:

boss@company.com'; DROP TABLE user; --

You should validate all incoming user data, but a prepared

statement makes SQL injection attacks far more dif?cult.

207 Node.js: Novice to Ninja

https://dev.mysql.com/doc/refman/en/string-functions.html#function_unhex
https://dev.mysql.com/doc/refman/en/string-functions.html#function_unhex
https://dev.mysql.com/doc/refman/8.0/en/miscellaneous-functions.html#function_inet-aton
https://dev.mysql.com/doc/refman/8.0/en/miscellaneous-functions.html#function_inet-aton

);

return res?.[0]?.count;

An error is thrown if any database operation fails:

}
catch (err) {
throw new Error('DB error', { cause: err });

}

}

As before, the main index.js script loads the lib/pagehit.js module, sets
req.count in a middleware function, and outputs it in a generated SVG in the
/hit.svg route.

Stop the MySQL Application

Stop both the Node.js page hit application and test page server by pressing
Ctrl | Cmd + C in their terminals. From the same project directory, stop the

MongoDB database and Adminer client with docker-compose down .

Sequelize ORM

The MySQL and MongoDB examples in their respective sections above use
native drivers to communicate directly with a database using its SQL or
NoSQL command syntax. This has some disadvantages:

Your application is tied to a specific database.
You must learn and implement the language used by that database.
You must track your own data and schema updates to ensure database
changes are pushed to all installations of the application.

An object-relational mapping (ORM) module can make development easier by
providing an abstract layer between your code and the database. Rather than
running SQL/NoSQL commands directly, your code manipulates data objects

Using Database Storage 208

that are saved and restored from a representation in a database.

sequelize is a popular Node.js ORM that supports MySQL, MariaDB,
PostgreSQL, SQLite, SQL Server, and other SQL databases. It still requires a
native database driver such as mysql2 , but there’s no need to write SQL
statements.

Start the Sequelize ORM Application

To use the ORM-based application, navigate to the pagehit-orm directory and
start MySQL and the Adminer client with docker-compose up .

In another terminal, install the Node.js express , sequelize , mysql2 , and
dotenv dependencies referenced in package.json :

npm install

Then start the page hit application:

npm start

Finally, start a web server in another terminal so you can load test pages:

npx small-static-server 8888 ./test

You now have four services running:

Your Own MySQL Installation?

As before, database con?guration parameters are de?ned in the

project .env ?le, which you can edit if you’re using your own

MySQL installation. In this case, there’s no initialization script,

because it’s handled by Node.js code.

209 Node.js: Novice to Ninja

https://www.npmjs.com/package/sequelize
https://www.npmjs.com/package/mysql2
https://www.npmjs.com/package/express
https://www.npmjs.com/package/sequelize
https://www.npmjs.com/package/mysql2
https://www.npmjs.com/package/dotenv

the MySQL database at http://localhost:3306

the Adminer database client at http://localhost:8080/

the page hit service at http://localhost:8001/

a test page web server at http://localhost:8888/

Different ports can be defined in the .env file if you have clashes.

Visit http://localhost:8888/page1.html or http://localhost:8888/page2.html to
view page counters. Refresh and watch the counter increase.

You can examine the database data using the Adminer panels at
http://localhost:8080/. Log on with the credentials specified in .env :

System: MySQL
Server: host.docker.internal (or your network IP address if not using
Docker Desktop)
Username: pagehituser
Password: pagehitpw
Database: pagehitorm

Then click select next to the hits table.

Sequelize ORM Functionality

The lib/pagehit.js file handles all Sequelize functionality. It loads the
required modules and extracts the configuration parameters from the .env

file using the dotenv module:

import dotenv from 'dotenv';
import Sequelize from 'sequelize';
import httpReferrer from './httpreferrer.js';

// load .env configuration
dotenv.config();

(There’s no need to import the mysql2 module, as Sequelize loads it.)

Using Database Storage 210

http://localhost:8888/page1.html
http://localhost:8888/page2.html
http://localhost:8080/
https://www.npmjs.com/package/dotenv

The database name, user, and password connection parameters are passed to
the Sequelize object constructor. A fourth options object defines the
database type, host, and port:

// initialize ORM connection
const sequelize = new Sequelize(
process.env.MYSQL_DATABASE,
process.env.MYSQL_USER,
process.env.MYSQL_PASSWORD,
{
host: process.env.MYSQL_HOST,
port: process.env.MYSQL_PORT,
dialect: 'mysql'

}
);

Rather than defining a table, you create a JavaScript class from a
Sequelize.Model class. The static init() method defines the property data

types and indexes (note that each model has a default id , createdAt , and
updatedAt date):

// define Hit class
class Hit extends Sequelize.Model {}
Hit.init(
{

hash: {
type: Sequelize.STRING(32),
allowNull: false

},
ip: {
type: Sequelize.STRING(15),
allowNull: true

},
ua: {
type: Sequelize.STRING(200),
allowNull: true

}

},

211 Node.js: Novice to Ninja

https://sequelize.org/master/manual/model-basics.html
https://sequelize.org/master/class/lib/model.js~Model.html#static-method-init

{
indexes: [
{ fields: ['hash', 'createdAt'] }

],
sequelize,
modelName: 'hit'

}

);

The asynchronous sync() method synchronizes all data models with the
database. In this case, a hits table is defined from the Hit model:

// synchronize model with database
await sequelize.sync();

Like before, lib/pagehit.js exports a single default asynchronous function.
It generates a hash from the referring page’s URL, returns when no referrer is
found, and determines the browser’s IP address (ip), and user agent (ua):

// count handler
export default async function(req) {

// hash of referring URL
const hash = httpReferrer(req);

// no referrer?
if (!hash) return null;

// fetch browser IP address and user agent
const
ipRe = req.ip.match(/(?:\d{1,3}\.){3}\d{1,3}/),
ip = ipRe?.[0] || null,
ua = req.get('User-Agent') || null;

A new Hit record is created with the data:

try {

Using Database Storage 212

https://sequelize.org/master/class/lib/sequelize.js~Sequelize.html#instance-method-sync
https://sequelize.org/master/class/lib/model.js~Model.html#static-method-create

// store page hit
await Hit.create(
{ hash, ip, ua }

);

A count of all items with the same hash is then returned:

// fetch page hit count
const res = await Hit.findAndCountAll({
where: { hash }

});

return res?.count;

An error is thrown if any operation fails:

}
catch (err) {
throw new Error('DB error', { cause: err });

}

}

As before, the main index.js script loads the lib/pagehit.js module, sets
req.count in a middleware function, and outputs it in a generated SVG in the
/hit.svg route.

How to Choose the Right Database

An SQL database such as MySQL is the best option when requirements are
clearly defined and data integrity is essential—such as for banking,
ecommerce, stock control, and so on. A money transfer requires an amount to
be debited from one account and credited to another: transactions guarantee
that both or neither update is successful.

A NoSQL database such as MongoDB could be ideal for projects where
organic data flexibility is important—such as content management, social
networks, web analytics, and so on.

213 Node.js: Novice to Ninja

In general:

A NoSQL database can be easier to use at the start of a project, but may
become more difficult as you identify data relationships.
An SQL database requires more careful data planning up front, but this can
return dividends toward the end of a project—(unless requirements change
radically!)

Complex projects could benefit from using two or more databases. For
example, a blog stored in MySQL could use Elasticsearch for Google-like
search queries. However, maintaining data integrity between two or more
databases is complex and cumbersome. It may also be unnecessary, because
the distinction between SQL and NoSQL has blurred:

some SQL databases have adopted NoSQL features, such as JSON and
XML fields
some NoSQL databases have adopted SQL features, such as JOINs and
transactions

Research the options, browse usage reports, and consult others to make sure
a database has the features and support you need. Try to abstract your data
manipulation code so it becomes easier to switch to another system if that
becomes necessary.

Native vs ORM Drivers

Think of an ORM as an abstract database framework. The benefits include:

They can be easier to learn than specific SQL or NoSQL dialects.
Development time is reduced, because a good ORM will manage security
and data integrity.
You can create data models in the application code. There’s no need to
directly create or alter tables.
ORMs track changes and can migrate schemas as necessary.
ORMs support multiple databases, which could be important if you’re
distributing web software for others to install.

Using Database Storage 214

https://db-engines.com/en/ranking

The downsides of an ORM:

They can still be difficult to learn. The Sequelize manual is daunting, and
that knowledge won’t be applicable elsewhere.
An ORM won’t save you from poor data decisions.
More complex queries can be difficult to express.
ORMs are slower, and queries won’t necessarily be optimized.
You’ll be unable to use advanced options provided in a specific database.
Database-related bugs may be more difficult to debug.

An ORM can be ideal for prototypes and smaller projects. Native drivers with
optimized, hand-crafted queries are better for larger projects where data
requirements are more critical.

If I could offer one piece of advice: learn SQL.

Unlike most development technologies, SQL has persisted for half a century,
and the skills are transferable to other databases. You’ll become more adept
at modeling data and creating efficient applications that require less code.
You’ll have fewer reasons to consider an ORM.

Exercises

Adapt any of the page hit counter projects so different routes can return:

Page hits during the past 24 hours.
Page hits from the current IP address.
Page hits from the same browser (Chrome, Edge, Safari, Firefox, etc.). This
is tricky! Browser user agent strings purposely obfuscate the application!
You may also need to parse and output another field to make searches
more efficient.

Summary

Databases are a core web application technology. If your database functions
well, it won’t necessarily matter whether you write the business logic using

215 Node.js: Novice to Ninja

https://sequelize.org/master/

Node.js, PHP, Python, Ruby, or .NET.

You need to start somewhere, so pick a database and create example
projects. Choosing an SQL database with a native driver will have a steep
learning curve, but persevere! It will make you a better web developer.

SQL and NoSQL resources:

Simply SQL
“SQL vs NoSQL: The Differences”
“SQL vs NoSQL: How to Choose”

MongoDB resources:

MongoDB website, documentation, downloads, and Docker image
“An Introduction to MongoDB”
mongo-express (Docker image), Mongoku (Docker image), and Robo 3T
MongoDB clients
mongodb and mongoose Node.js database drivers

MySQL resources:

MySQL website, documentation, downloads and Docker image
“How to Install MySQL”
Adminer (Docker image) and phpMyAdmin (Docker image) MySQL clients
mysql, mysql2, and sequelize ORM Node.js database drivers
“Using MySQL with Node.js and the mysql JavaScript Client”

You could also consider the MySQL-compatible MariaDB database system:
documentation, downloads, Docker image, and mariadb Node.js module.

PostgreSQL resources:

PostgreSQL website, documentation, downloads, and Docker image
Adminer (Docker image) and other PostgreSQL clients
node-postgres, postgres, and Sequelize ORM Node.js database drivers

Using Database Storage 216

https://www.sitepoint.com/premium/books/simply-sql
https://www.sitepoint.com/sql-vs-nosql-differences/
https://www.sitepoint.com/sql-vs-nosql-choose/
https://www.mongodb.com/
https://docs.mongodb.com/manual/
https://www.mongodb.com/download-center/community
https://hub.docker.com/_/mongo
https://www.sitepoint.com/an-introduction-to-mongodb/
https://github.com/mongo-express/mongo-express
https://hub.docker.com/_/mongo-express
https://www.npmjs.com/package/mongoku
https://hub.docker.com/r/huggingface/mongoku
https://robomongo.org/download
https://www.npmjs.com/package/mongodb
https://www.npmjs.com/package/mongoose
https://www.mysql.com/
https://dev.mysql.com/doc/
https://www.mysql.com/downloads/
https://hub.docker.com/_/mysql
https://www.sitepoint.com/how-to-install-mysql/
https://www.adminer.org/
https://hub.docker.com/_/adminer
https://www.phpmyadmin.net/
https://hub.docker.com/r/phpmyadmin/phpmyadmin
https://www.npmjs.com/package/mysql
https://www.npmjs.com/package/mysql2
https://www.npmjs.com/package/sequelize
https://www.sitepoint.com/using-node-mysql-javascript-client/
https://mariadb.org/
https://mariadb.org/documentation/
https://downloads.mariadb.org/
https://hub.docker.com/_/mariadb
https://www.npmjs.com/package/mariadb
https://www.postgresql.org/
https://www.postgresql.org/docs/manuals/
https://www.postgresql.org/download/
https://hub.docker.com/_/postgres
https://www.adminer.org/
https://hub.docker.com/_/adminer
https://wiki.postgresql.org/wiki/PostgreSQL_Clients
https://www.npmjs.com/package/pg
https://www.npmjs.com/package/postgres
https://www.npmjs.com/package/sequelize

SQLite is a small, free, file-based SQL database engine. It’s not recommended
for busy websites, but it can be ideal for demonstration projects, embedded
systems, desktop, and mobile applications.

SQLite website, documentation, and downloads
better-sqlite3, sqlite3, sqlite, and Sequelize ORM Node.js database drivers

Quiz

1. SQL is short for:

a. Simple Query Language
b. Structured Query Language
c. Statistical Query Language
d. Small & Quick Language

2. A MySQL database table can store:

a. table data
b. JSON data
c. XML data
d. all of the above

3. A MongoDB database can:

a. be used without a data schema
b. be used with a data schema
c. join data in two collections
d. all of the above

4. ORM is short for:

a. object-relational mapping
b. object-reference model
c. ordered-reference map
d. ordered-results management

217 Node.js: Novice to Ninja

https://www.sqlite.org/
https://www.sqlite.org/docs.html
https://www.sqlite.org/download.html
https://www.npmjs.com/package/better-sqlite3
https://www.npmjs.com/package/sqlite3
https://www.npmjs.com/package/sqlite
https://www.npmjs.com/package/sequelize

5. A database index:

a. defines data in a specific order
b. is automatically used when required
c. should make queries faster
d. all of the above

Using Database Storage 218

Using
WebSockets

Chapter

11

219 Node.js: Novice to Ninja

This chapter demonstrates how to use WebSockets—a technology that
makes it possible to open a two-way, interactive communication channel
between a browser and a server. In the past, this was difficult to achieve on
most platforms, and often required a third-party service. Node.js makes it
easy, although we’ll delve into some deeper challenges.

What Are WebSockets?

The web is a request–response communication platform. Your browser
requests a web page and receives HTML as the response from a web server.
The page may reference assets such as images, fonts, CSS, and JavaScript;
the browser makes an additional request for each.

1. HTTP request

2. HTTP response

web browser

web server

11-1. HTTP request and response

The browser initiates every request. A web server can’t arbitrarily push data to
a user. It must be requested first.

Ajax techniques can be used to make web apps look as though they update in

Skip Ahead?

It’s possible to become a respected senior developer without

touching WebSockets! You can skip this chapter, but the

technology opens a world of opportunities you may not have

considered before.

Using WebSockets 220

real time by initiating a polling request every few seconds. This can check for
new data from a web server and update the DOM as necessary.

Few apps need go beyond this request–response model, because data
changes infrequently in a typical web application. However, it’s not ideal for
true real-time applications such as stock price dashboards, chat apps, and
multiplayer games. Polling every second would be inefficient at certain times,
and too slow at others. It’s also difficult for a server to determine what
changed between two polling intervals: every browser could be asking for
different data.

WebSockets provide a solution for real-time apps. The browser makes an
initial WebSocket request, which opens a communication channel. At that
point, either the browser or server can send a message that raises an event on
the other device.

Initiate WebSocketweb browser

web server

2-way communication

11-2. WebSocket two-way communication

Two things to be aware of:

A browser can only send a message to the WebSocket server.
The WebSocket server can send a message to any of its connected clients.

One browser can’t directly message another. It can only send a message to
the central WebSocket server and hope it gets forwarded as necessary.

221 Node.js: Novice to Ninja

https://developer.mozilla.org/Web/API/WebSockets_API

Example WebSocket Chat Application

The sections below explain how to create a simple real-time chat app using
WebSockets. Chat apps are the “Hello, World!” of WebSocket demonstrations,
so I apologize for being unoriginal—but they show the concepts without too
much code.

To get started, navigate to the wschat code directory in your terminal and
install the Node.js dependencies with npm install .

Run the application with npm start .

Open http://localhost:3000/ in a number of browser tabs (you can also define
your chat name on the query string—such as http://localhost:3000/?Craig).
Type something in one window, then press SEND or hit Enter, and you’ll see it

appear in every window.

11-3. Chat windows

View the video to see the chat application in action.

Using WebSockets 222

https://github.com/spbooks/ultimatenode1/tree/main/ch11/wschat
http://localhost:3000/
http://localhost:3000/?Craig
https://vimeo.com/693630979/e0ba9705dd

WebSocket Walkthrough

The application works by starting two server processes in the index.js file:

An Express app with an EJS template to serve a single page with client-side
HTML, CSS, and JavaScript. This runs at http://localhost:3000/ and uses
the browser WebSocket API to send and receive messages.

A WebSocket server, which listens for incoming client connections,
receives messages, sends messages, and monitors disconnections. This
runs at ws://localhost:3001/ and uses the Node.js ws library.

A "connection" event is raised when a connection is received from a
browser. The handler function receives a socket object used to
communicate with that individual device.

A socket "message" event is raised when a client sends a message.
The chat application’s handler function broadcasts that message to
every connected client.

A socket "close" event is raised when the client disconnects (typically
when the browser tab is closed or refreshed).

Here’s the full server JavaScript code:

// WebSocket server
import WebSocket, { WebSocketServer } from 'ws';

const ws = new WebSocketServer({ port: cfg.wsPort });

// client connection
ws.on('connection', (socket, req) => {

console.log(`connection from ${ req.socket.remoteAddress }`);

// received message
socket.on('message', (msg, binary) => {

223 Node.js: Novice to Ninja

http://localhost:3000/
https://developer.mozilla.org/Web/API/WebSocket
ws://localhost:3001/
https://www.npmjs.com/package/ws

1

2

3

// broadcast to all clients
ws.clients.forEach(client => {
client.readyState === WebSocket.OPEN && client.send(msg, { binary });

});

});

// closed
socket.on('close', () => {
console.log(`disconnection from ${ req.socket.remoteAddress }`);

});

});

The client-side browser JavaScript:

caches HTML dom nodes for later use

sets a default username from the query string or a random string

determines the ws:// WebSocket connection address using the page’s

domain plus the port defined in the HTML page template

// get page DOM nodes
const dom = { form: 0, chat: 0, name: 0, message: 0 };
for (let n in dom) dom[n] = document.getElementById(n);

// set user's name
dom.name.value = decodeURIComponent(location.search.trim().slice(1,1 + window.
➥cfg.nameLen)) || 'Anonymous' + Math.floor(Math.random() * 99999);

wsInit(`ws://${ location.hostname }:${ window.cfg.wsPort }`);

A wsInit() function is called with the WebSocket server address to initiate
the connection. An open event is triggered when a connection is established.
At this point, the handler function sends an “entered the chat room” message
by calling sendMessage() :

Using WebSockets 224

// handle WebSocket communication
function wsInit(wsServer) {

const ws = new WebSocket(wsServer);

// connect to server
ws.addEventListener('open', () => {
sendMessage('entered the chat room');

});

The sendMessage() function fetches the user’s name and message from the
HTML form, although the message can be overridden by any passed setMsg

argument. The values are converted to a JSON object that’s sent over the
WebSocket channel using its ws.send() method:

// send message
function sendMessage(setMsg) {

let
name = dom.name.value.trim(),
msg = setMsg || dom.message.value.trim();

name && msg && ws.send(JSON.stringify({ name, msg }));

}

The message is received by the server’s "message" handler and broadcast to
every connected client—including the client that sent the message. This
triggers a "message" event on each client, with the event’s data property set
to the original JSON. The handler function parses this back to a JavaScript
object and updates the chat window:

// receive message
ws.addEventListener('message', e => {

try {

const
chat = JSON.parse(e.data),

225 Node.js: Novice to Ninja

name = document.createElement('div'),
msg = document.createElement('div');

name.className = 'name';
name.textContent = (chat.name || 'unknown');
dom.chat.appendChild(name);

msg.className = 'msg';
msg.textContent = (chat.msg || 'said nothing');
dom.chat.appendChild(msg).scrollIntoView({ behavior: 'smooth' });

}
catch(err) {
console.log('invalid JSON', err);

}

});

Finally, new messages are sent using sendMessage() whenever the form’s
"submit" handler is triggered:

// form submit
dom.form.addEventListener('submit', e => {
e.preventDefault();
sendMessage();
dom.message.value = '';
dom.message.focus();

}, false);

This chapter’s second video also explains the basics of the chat application’s
functionality.

Advanced WebSockets Considerations

WebSocket technology is easy in Node.js: one device sends a message using a
send() method, which triggers a "message" event on the other. How each

device creates and responds to messages is more challenging.

Consider an online multiplayer game. The game could have many universes
playing separate instances of the game—such as universeA , universeB , and

Using WebSockets 226

https://vimeo.com/693631161/ff1fbaca38

1

2

universeC . Each player can connect to a single universe:

universeA : joined by player1 , player2 , and player3

universeB : joined by player99

You could do one of the following:

Use a separate WebSocket server for each game universe.

Game WebSocket servers

universeA universeB universeC

play... play... play...

11-4. Using multiple WebSocket servers

This would make user management easy: a player action in universeA would
never be seen by those in universeB . However, launching and managing
separate server instances could be difficult. Would you stop universeC

because it has no players, or continue to pay for that resource?

Use a single WebSocket server for all game universes.

227 Node.js: Novice to Ninja

WebSocket server

play... play... play... play...

universeA universeB

universeC

11-5. Using a single WebSocket server

This would use fewer resources and be easier to manage, but the WebSocket
server must record which universe each player joins. When player1 performs
an action, it should only be broadcast to player2 and player3 —not
player99 .

Using WebSockets 228

You must then consider game mechanics and messaging efficiency. For
example:

How do you synchronize a player’s actions across all client devices?

If player1 can’t currently be seen by player2 (because they’re in another
room), is it necessary for player2 to receive a message about their
actions?

How do you cope with network latency—or communication lag? Would
someone with a faster machine and connection have an unfair advantage?

Fast action games have to make compromises. In essence, you’re playing the
game on your local device but some objects are influenced by the activities of
other people. Rather than sending the exact position of every object at all
times, games can send simpler, less frequent messages. For example:

objectX has appeared at pointX
objectY has a new direction and velocity
objectZ has been destroyed

… and so on.

Each client game fills in the gaps. When objectZ explodes, it rarely matters
whether the explosion looks the same on every device.

This all explains why you were unfairly beaten in your favorite game by a
seemingly invisible player!

Multiple WebSocket Servers

The example chat application can cope with dozens of concurrent users, but
at some point, it’ll crash as popularity rises. More RAM can help, but there are
limits. You’ll eventually require another server.

229 Node.js: Novice to Ninja

1

2

Each WebSocket server can only manage its own connected clients. A
message sent from a user to serverA wouldn’t be broadcast to those
connected to serverB . It may be necessary to implement backend, pub–sub
messaging systems such as Kafka, Redis, or RabbitMQ.

Therefore:

WebSocket serverA wants to send a message to all clients. It publishes
the message on the pub–sub system.

All WebSocket servers subscribed to the pub–sub system receive a new
message event (including serverA). Each can handle the message and

broadcast it to their connected clients as necessary.

What is Pub–sub?

Publisher–subscriber services provide asynchronous

communication services. An application can send (publish) a

message to the pub–sub system. Applications can subscribe to

those messages and be instantly alerted when a new one arrives.

Using WebSockets 230

Chat WebSocket servers

serverA serverB serverN

user1 user2 user3

pub-sub message system
11-6. Multiple WebSocket servers with a pub–sub system

The example real-time quiz at the end of this course uses PostgreSQL to
provide pub–sub functionality.

Exercise

Adapt the chat application to store the most recent 30 messages and send
them to any new user entering the chat room. For big bonus points, store

231 Node.js: Novice to Ninja

message data in a database so it persists between application restarts.

You could also experiment with sending different types of messages. For
example, allow private messages to be sent to a single user.

Summary

Node.js makes it easy to handle WebSockets. It won’t make real-time
applications easier to design or code, but the technology won’t hold you back.

Note that ws isn’t the only Node.js option. Almost 1,000 other WebSocket
packages are available. Some provide their own browser client libraries or
integrate with JavaScript frameworks to make usage easier.

You could also consider server-sent events if your app only needs to receive
updates from a central server.

Quiz

1. WebSockets offer:

a. two-way browser/server communication
b. real-time messaging
c. an event-driven API
d. all of the above

2. A WebSocket server:

a. responds to connections and messages from clients
b. passes connection requests to and from a web server
c. initiates the WebSocket connection
d. all of the above

3. A message sent on a WebSocket connection must be:

a. a string

Using WebSockets 232

https://www.npmjs.com/search?q=keywords:WebSockets
https://www.npmjs.com/search?q=keywords:WebSockets
https://developer.mozilla.org/Web/API/Server-sent_events/Using_server-sent_events

b. JSON
c. binary data
d. any text or binary data

4. A browser WebSocket client can message another user’s browser by:

a. sending a direct peer-to-peer message that bypasses the server
b. sending a message to the WebSocket server that forwards as necessary
c. adding the other user’s IP address to the message
d. all of the above

5. Which best describes WebSocket code as used in the ws library?

a. a message() call that triggers a "sent" event on the other device
b. a send() call that triggers a "message" event on the other device
c. a transmit() call that triggers a "received" event on the other device
d. a send() call that triggers a "receive" event on the other device

233 Node.js: Novice to Ninja

Useful
Node.js APIs

Chapter

12

Useful Node.js APIs 234

This chapter demonstrates a selection of regularly used APIs that are built in
to the standard Node.js runtime. You’ve seen some in previous chapters of this
book, but I hope the following sections will pique your interest and encourage
you to browse the Node.js API documentation.

Process

The process object provides information about your Node.js application as
well as control methods. process is available globally: you can use it without
import , although the Node.js documentation recommends you explicitly

reference it:

import process from 'process';

We’ve used process.argv in other scripts to fetch commmand-line
arguments:

const firstArg = process.argv[2];

process.argv returns an array where the first two items are the Node.js
executable path and the script name. The item at index 2 is the first argument

Module node: URL Imports

Node.js 14 and above support node: imports for both ESM and

CommonJS modules. Rather than using the API’s module name:

import path from 'path';

… you can reference it using an absolute node: URL:

import path from 'node:path';

This might be practical if you had another module named path or

want to distinguish built-in APIs in your code.

235 Node.js: Novice to Ninja

https://nodejs.org/dist/latest/docs/api/
https://nodejs.org/api/esm.html#node-imports
https://nodejs.org/dist/latest/docs/api/process.html
https://nodejs.org/dist/latest/docs/api/process.html#processargv

passed.

Other useful properties and methods include:

process.env : returns an object containing environment name/value
pairs—such as process.env.NODE_ENV .

process.cwd() : returns the current working directory.

process.platform : returns a string identifying the operating system:
'aix' , 'darwin' (macOS), 'freebsd' , 'linux' , 'openbsd' , 'sunos' , or
'win32' (Windows).

process.uptime() : returns the number of seconds the Node.js process has
been running.

process.cpuUsage() : returns the user and system CPU time usage of the
current process—such as { user: 12345, system: 9876 } . Pass the object
back to the method to get a relative reading.

process.memoryUsage() : returns an object describing memory usage in
bytes.

process.version : returns the Node.js version string—such as 18.0.0 .

process.report : generates a diagnostic report.

process.exit(code) : exits the current application. Use an exit code of 0

to indicate success or an appropriate error code where necessary.

process is also an event emitter (see the “Events” section): you can attach
event handler functions to events such as 'beforeExit' to clean up before
the process terminates. For example:

Useful Node.js APIs 236

https://nodejs.org/dist/latest/docs/api/process.html#processenv
https://nodejs.org/dist/latest/docs/api/process.html#processcwd
https://nodejs.org/dist/latest/docs/api/process.html#processplatform
https://nodejs.org/dist/latest/docs/api/process.html#processuptime
https://nodejs.org/dist/latest/docs/api/process.html#processuptime
https://nodejs.org/dist/latest/docs/api/process.html#processcpuusagepreviousvalue
https://nodejs.org/dist/latest/docs/api/process.html#processmemoryusage
https://nodejs.org/dist/latest/docs/api/process.html#processmemoryusage
https://nodejs.org/dist/latest/docs/api/process.html#processversion
https://nodejs.org/dist/latest/docs/api/report.html
https://nodejs.org/dist/latest/docs/api/process.html#processexitcode
https://nodejs.org/dist/latest/docs/api/process.html#exit-codes
https://nodejs.org/dist/latest/docs/api/process.html#process-events
https://nodejs.org/dist/latest/docs/api/process.html#process-events

// clean up when the Node.js process terminates
process.on('beforeExit', code => {
// ...

});

OS

The os API has similarities to process (see the “Process” section above), but
it can also return the following:

os.cpus() : returns an array of objects with information about each logical
CPU core. The “Clusters” section below references os.cpus() to fork the
process. On a 16-core CPU, you’d have 16 instances of your Node.js
application running to improve performance.

os.hostname() : the OS host name.

os.version() : a string identifying the OS kernel version.

os.homedir() : the full path of the user’s home directory.

os.tmpdir() : the full path of the operating system’s default temporary file
directory.

os.uptime() : the number of seconds the OS has been running.

exit Events

You can also de?ne an exit handler function. However, this can’t

run asynchronous functions such as disconnecting from a database

or outputting a log ?le, because the Node.js event loop will end on

the current iteration and the program will terminate.

237 Node.js: Novice to Ninja

https://nodejs.org/dist/latest/docs/api/os.html
https://nodejs.org/dist/latest/docs/api/os.html#oscpus
https://nodejs.org/dist/latest/docs/api/os.html#oshostname
https://nodejs.org/dist/latest/docs/api/os.html#osversion
https://nodejs.org/dist/latest/docs/api/os.html#oshomedir
https://nodejs.org/dist/latest/docs/api/os.html#ostmpdir
https://nodejs.org/dist/latest/docs/api/os.html#osuptime

Util

The util module provides an assortment of useful JavaScript methods. One
of the most useful is util.promisify(function) , which takes an error-first
callback style function and returns a promise-based function. (See the code in
Chapter 9 for a demonstration.)

Further methods include:

util.callbackify(function) : takes a function that returns a promise and
returns a callback-based function.

util.isDeepStrictEqual(object1, object2) : returns true when there’s a
deep equality between two objects (all child properties must match).

util.format(format, [args]) : returns a string using a printf-like format.

util.inspect(object, options) : returns a string representation of an
object for debugging. This is similar to using console.dir(object, {

depth: null, color: true }); .

util.stripVTControlCharacters(str) : strips ANSI escape codes from a
string.

util.types provides type checking for common JavaScript and Node.js
values. For example:

import util from 'util';

util.types.isDate(new Date()); // true
util.types.isMap(new Map()); // true
util.types.isRegExp(/abc/); // true
util.types.isAsyncFunction(async () => {}); // true

Useful Node.js APIs 238

https://nodejs.org/dist/latest/docs/api/util.html
https://nodejs.org/dist/latest/docs/api/util.html#utilpromisifyoriginal
https://github.com/spbooks/ultimatenode1/blob/main/ch09/05-promisify.mjs
https://github.com/spbooks/ultimatenode1/blob/main/ch09/05-promisify.mjs
https://nodejs.org/dist/latest/docs/api/util.html#utilcallbackifyoriginal
https://nodejs.org/dist/latest/docs/api/util.html#utilisdeepstrictequalval1-val2
https://nodejs.org/dist/latest/docs/api/util.html#utilformatformat-args
https://en.wikipedia.org/wiki/Printf_format_string
https://nodejs.org/dist/latest/docs/api/util.html#utilinspectobject-options
https://nodejs.org/dist/latest/docs/api/util.html#utilstripvtcontrolcharactersstr
https://nodejs.org/dist/latest/docs/api/util.html#utiltypes

URL

URL is another global object that lets you safely create, parse, and modify
web URLs. For example:

const myURL = new URL('https://example.org:8000/path/?abc=123#target');
console.dir(myURL, { depth: null, color: true });

The code above outputs this:

{
href: 'https://example.org:8000/path/?abc=123#target',
origin: 'https://example.org:8000',
protocol: 'https:',
username: '',
password: '',
host: 'example.org:8000',
hostname: 'example.org',
port: '8000',
pathname: '/path/',
search: '?abc=123',
searchParams: URLSearchParams { 'abc' => '123' },
hash: '#target'

}

You can view and change any property. For example:

myURL.port = 8001;
console.log(myURL.href);
// https://example.org:8001/path/?abc=123#target

You can then use the URLSearchParams API to modify query string values. For
example:

myURL.searchParams.delete('abc');
myURL.searchParams.append('xyz', 987);
console.log(myURL.search);
// ?xyz=987

239 Node.js: Novice to Ninja

https://nodejs.org/dist/latest/docs/api/url.html
https://nodejs.org/dist/latest/docs/api/url.html#class-urlsearchparams

There are also methods for converting file system paths to URLs and back
again.

The dns module provides name resolution functions so you can look up the
IP address, name server, TXT records, and other domain information.

File System

The fs API can create, read, update, and delete files, directories, and
permissions. Recent releases of the Node.js runtime provide promise-based
functions in fs/promises , which make it easier to manage asynchronous file
operations.

The example code has a filecompress project, which compresses a text file
(typically HTML, CSS, or JS) by removing whitespace and comments. (It’s a
demonstration—so please don’t use it on real files! The compression process
is simplistic and will mangle some files.)

The project has a lib/fileinfo.js module that returns information about a
file system object using the stat and access methods:

// fetch file information
import { constants as fsConstants } from 'fs';
import { access, stat } from 'fs/promises';

export async function getFileInfo(file) {

const fileInfo = {};

try {
const info = await stat(file);

fs and path

You’ll often use fs in conjunction with path to resolve ?le names

on different operating systems.

Useful Node.js APIs 240

https://nodejs.org/dist/latest/docs/api/url.html#urlpathtofileurlpath
https://nodejs.org/dist/latest/docs/api/url.html#urlfileurltopathurl
https://nodejs.org/dist/latest/docs/api/url.html#urlfileurltopathurl
https://nodejs.org/dist/latest/docs/api/dns.html
https://nodejs.org/dist/latest/docs/api/fs.html
https://nodejs.org/dist/latest/docs/api/fs.html#promises-api
https://nodejs.org/dist/latest/docs/api/fs.html#promises-api
https://nodejs.org/dist/latest/docs/api/path.html
https://github.com/spbooks/ultimatenode1/tree/main/ch12/filecompress
https://nodejs.org/dist/latest/docs/api/fs.html#fspromisesstatpath-options
https://nodejs.org/dist/latest/docs/api/fs.html#fspromisesaccesspath-mode

fileInfo.isFile = info.isFile();
fileInfo.isDir = info.isDirectory();

}
catch (e) {
return { new: true };

}

try {
await access(file, fsConstants.R_OK);
fileInfo.canRead = true;

}
catch (e) {}

try {
await access(file, fsConstants.W_OK);
fileInfo.canWrite = true;

}
catch (e) {}

return fileInfo;

}

When passed a filename, the function returns an object with information
about that file. For example:

{
isFile: true,
isDir: false,
canRead: true,
canWrite: true

}

The main filecompress.js script uses path.resolve() to resolve input and
output filenames passed on the command line into absolute file paths, then
fetches information using getFileInfo() above:

#!/usr/bin/env node
import path from 'path';
import { readFile, writeFile } from 'fs/promises';

241 Node.js: Novice to Ninja

import { getFileInfo } from './lib/fileinfo.js';

// check files
let
input = path.resolve(process.argv[2] || ''),
output = path.resolve(process.argv[3] || ''),
[inputInfo, outputInfo] = await Promise.all([getFileInfo(input),
➥getFileInfo(output)]),
error = [];

The code validates the paths and terminates with error messages if
necessary:

// use input file name when output is a directory
if (outputInfo.isDir && outputInfo.canWrite && inputInfo.isFile) {
output = path.resolve(output, path.basename(input));

}

// check for errors
if (!inputInfo.isFile || !inputInfo.canRead) error.push(`cannot read input file
➥${ input }`);
if (input === output) error.push('input and output files cannot be the same');

if (error.length) {

console.log('Usage: ./filecompress.js [input file] [output file|dir]');
console.error('\n ' + error.join('\n '));
process.exit(1);

}

The whole file is then read into a string named content using readFile() :

// read file
console.log(`processing ${ input }`);
let content;

try {
content = await readFile(input, { encoding: 'utf8' });

}
catch (e) {

Useful Node.js APIs 242

https://nodejs.org/dist/latest/docs/api/fs.html#fspromisesreadfilepath-options

console.log(e);
process.exit(1);

}

let lengthOrig = content.length;
console.log(`file size ${ lengthOrig }`);

JavaScript regular expressions then remove comments and whitespace:

// compress content
content = content
.replace(/\n\s+/g, '\n') // trim leading space from lines
.replace(/\/\/.*?\n/g, '') // remove inline // comments
.replace(/\s+/g, ' ') // remove whitespace
.replace(/\/*.*?*\//g, '') // remove /* comments */
.replace(/<!--.*?-->/g, '') // remove <!-- comments -->
.replace(/\s*([<>(){}}[\]])\s*/g, '$1') // remove space around brackets
.trim();

let lengthNew = content.length;

The resulting string is output to a file using writeFile() , and a status
message shows the saving:

let lengthNew = content.length;

// write file
console.log(`outputting ${output}`);
console.log(`file size ${ lengthNew } - saved ${ Math.round((lengthOrig -
➥lengthNew) / lengthOrig * 100) }%`);

try {
content = await writeFile(output, content);

}
catch (e) {
console.log(e);
process.exit(1);

}

Run the project code with an example HTML file:

243 Node.js: Novice to Ninja

https://nodejs.org/dist/latest/docs/api/fs.html#fspromiseswritefilefile-data-options

node filecompress.js ./test/example.html ./test/output.html

12-1. filecompress.js output

View the demonstration video to see the code in action.

Events

You often need to execute multiple functions when something occurs. For
example, a user registers on your app, so the code must add their details to a
database, start a new logged-in session, and send a welcome email:

// example pseudo code
async function userRegister(name, email, password) {

try {

await dbAddUser(name, email, password);
await new UserSession(email);
await emailRegister(name, email);

}
catch (e) {
// handle error

}

}

This series of function calls is tightly coupled to user registration. Further
activities incur further function calls. For example:

// updated pseudo code
try {

Useful Node.js APIs 244

https://vimeo.com/707860731/3c15352d3f

await dbAddUser(name, email, password);
await new UserSession(email);
await emailRegister(name, email);

await crmRegister(name, email); // register on customer system
await emailSales(name, email); // alert sales team

}

You could have dozens of calls managed in this single, ever-growing code
block.

The Node.js Events API provides an alternative way to structure the code
using a publish–subscribe pattern. The userRegister() function can emit an
event—perhaps named newuser —after the user’s database record is created.

Any number of event handler functions can subscribe and react to newuser

events; there’s no need to change the userRegister() function. Each handler
runs independently of the others, so they could execute in any order.

Events in Client-side JavaScript

Events and handler functions are frequently used in client-side

JavaScript—for example, to run a function when the user clicks an

element:

// client-side JS click handler
document.getElementById('myelement').addEventListener('click', e => {

// output information about the event
console.dir(e);

});

In most situations, you’re attaching handlers for user or browser

events, although you can raise your own custom events. Event

handling in Node.js is conceptually similar, but the API is different.

245 Node.js: Novice to Ninja

https://nodejs.org/dist/latest/docs/api/events.html
https://developer.mozilla.org/docs/Web/API/CustomEvent

Objects that emit events must be instances of the Node.js EventEmitter

class. These have an emit() method to raise new events and an on()

method for attaching handlers.

The event example project provides a class that triggers a tick event on
predefined intervals. The ./lib/ticker.js module exports a default class

that extends EventEmitter :

// emits a 'tick' event every interval
import EventEmitter from 'events';
import { setInterval, clearInterval } from 'timers';

export default class extends EventEmitter {

Its constructor must call the parent constructor. It then passes the delay

argument to a start() method:

constructor(delay) {
super();
this.start(delay);

}

The start() method checks delay is valid, resets the current timer if
necessary, and sets the new delay property:

start(delay) {

if (!delay || delay == this.delay) return;

if (this.interval) {
clearInterval(this.interval);

}

this.delay = delay;

It then starts a new interval timer that runs the emit() method with the event
name "tick" . Subscribers to this event receive an object with the delay value
and number of seconds since the Node.js application started:

Useful Node.js APIs 246

https://nodejs.org/dist/latest/docs/api/events.html#class-eventemitter
https://nodejs.org/dist/latest/docs/api/events.html#class-eventemitter
https://nodejs.org/dist/latest/docs/api/events.html#emitteremiteventname-args
https://nodejs.org/dist/latest/docs/api/events.html#emitteroneventname-listener
https://nodejs.org/dist/latest/docs/api/events.html#emitteroneventname-listener
https://github.com/spbooks/ultimatenode1/tree/main/ch12/event
https://nodejs.org/dist/latest/docs/api/perf_hooks.html#performancenow

// start timer
this.interval = setInterval(() => {

// raise event
this.emit('tick', {
delay: this.delay,
time: performance.now()

});

}, this.delay);

}

}

The main event.js entry script imports the module and sets a delay period
of one second (1000 milliseconds):

// create a ticker
import Ticker from './lib/ticker.js';

// trigger a new event every second
const ticker = new Ticker(1000);

It attaches handler functions triggered every time a tick event occurs:

// add handler
ticker.on('tick', e => {
console.log('handler 1 tick!', e);

});

// add handler
ticker.on('tick', e => {
console.log('handler 2 tick!', e);

});

A third handler triggers on the first tick event only using the once()

method:

247 Node.js: Novice to Ninja

https://nodejs.org/dist/latest/docs/api/events.html#emitteronceeventname-listener

// add handler
ticker.once('tick', e => {
console.log('handler 3 tick!', e);

});

Finally, the current number of listeners is output:

// show number of listeners
console.log(`listeners: ${ ticker.listenerCount('tick') }`);

Run the project code with node event.js .

The output shows handler 3 triggering once, while handler 1 and 2 run on
every tick until the app is terminated.

12-2. An event example

Press Ctrl | Cmd + C to terminate the application.

View the demonstration video to see the code in action.

Streams

The file system example code above (in the “File System” section) reads a

Useful Node.js APIs 248

https://vimeo.com/707860827/8f96f81048

whole file into memory before outputting the minified result. What if the file
was larger than the RAM available? The Node.js application would fail with an
“out of memory” error.

The solution is streaming. This processes incoming data in smaller, more
manageable chunks. A stream can be:

readable: from a file, a HTTP request, a TCP socket, stdin, etc.
writable: to a file, a HTTP response, TCP socket, stdout, etc.
duplex: a stream that’s both readable and writable
transform: a duplex stream that transforms data

Each chunk of data is returned as a Buffer object, which represents a fixed-
length sequence of bytes. You may need to convert this to a string or another
appropriate type for processing.

The example code has a filestream project which uses a transform stream
to address the file size problem in the filecompress project. As before, it
accepts and validates input and output filenames before declaring a
Compress class, which extends Transform :

import { createReadStream, createWriteStream } from 'fs';
import { Transform } from 'stream';

// compression Transform
class Compress extends Transform {

constructor(opts) {
super(opts);
this.chunks = 0;
this.lengthOrig = 0;
this.lengthNew = 0;

}

_transform(chunk, encoding, callback) {

const
data = chunk.toString(), // buffer to string

249 Node.js: Novice to Ninja

https://nodejs.org/dist/latest/docs/api/buffer.html
https://nodejs.org/dist/latest/docs/api/buffer.html#buftostringencoding-start-end
https://github.com/spbooks/ultimatenode1/tree/main/ch12/filestream
https://nodejs.org/dist/latest/docs/api/stream.html#class-streamtransform

content = data
.replace(/\n\s+/g, '\n') // trim leading spaces
.replace(/\/\/.*?\n/g, '') // remove // comments
.replace(/\s+/g, ' ') // remove whitespace
.replace(/\/*.*?*\//g, '') // remove /* comments */
.replace(/<!--.*?-->/g, '') // remove <!-- comments -->
.replace(/\s*([<>(){}}[\]])\s*/g, '$1') // remove bracket spaces
.trim();

this.chunks++;
this.lengthOrig += data.length;
this.lengthNew += content.length;

this.push(content);
callback();

}

}

The _transform method is called when a new chunk of data is ready. It’s
received as a Buffer object that’s converted to a string, minified, and output
using the push() method. A callback() function is called once chunk
processing is complete.

The application initiates file read and write streams and instantiates a new
compress object:

// process stream
const
readStream = createReadStream(input),
writeStream = createWriteStream(output),
compress = new Compress();

console.log(`processing ${ input }`);

The incoming file read stream has .pipe() methods defined, which feed the
incoming data through a series of functions that may (or may not) alter the
contents. The data is piped through the compress transform before that
output is piped to the writeable file. A final on('finish') event handler

Useful Node.js APIs 250

https://nodejs.org/dist/latest/docs/api/stream.html#transform_transformchunk-encoding-callback
https://nodejs.org/dist/latest/docs/api/fs.html#fscreatereadstreampath-options
https://nodejs.org/dist/latest/docs/api/fs.html#fscreatewritestreampath-options
https://nodejs.org/dist/latest/docs/api/stream.html#readablepipedestination-options
https://nodejs.org/dist/latest/docs/api/stream.html#event-finish

function executes once the stream has ended:

readStream.pipe(compress).pipe(writeStream).on('finish', () => {

console.log(`file size ${ compress.lengthOrig }`);
console.log(`output ${ output }`);
console.log(`chunks ${ compress.chunks }`);
console.log(`file size ${ compress.lengthNew } - saved ${ Math.round((
➥compress.lengthOrig - compress.lengthNew) / compress.lengthOrig * 100) }%`);

});

Run the project code with an example HTML file of any size:

node filestream.js ./test/example.html ./test/output.html

12-3. filestream.js output

View the demonstration video to see the code in action.

This is a small demonstration of Node.js streams. Stream handling is a
complex topic, and you may not use them often. In some cases, a module such
as Express uses streaming under the hood but abstracts the complexity from
you.

You should also be aware of data chunking challenges. A chunk could be any
size and split the incoming data in inconvenient ways. Consider minifying this
code:

<script type="module">
// example script

251 Node.js: Novice to Ninja

https://nodejs.org/dist/latest/docs/api/stream.html#event-finish
https://vimeo.com/707860949/e4cbb2403a

1

2

3

console.log('loaded');
</script>

Two chunks could arrive in sequence:

<script type="module">
// example

And:

script
console.log('loaded');

</script>

Processing each chunk independently results in the following invalid minified
script:

<script type="module">script console.log('loaded');</script>

The solution is to pre-parse each chunk and split it into whole sections that
can be processed. In some cases, chunks (or parts of chunks) will be added to
the start of the next chunk.

Minification is best applied to whole lines, although an extra complication
occurs because <!-- --> and /* */ comments can span more than one
line. Here’s a possible algorithm for each incoming chunk:

Append any data saved from the previous chunk to the start of the new
chunk.

Remove any whole <!-- to --> and /* to */ sections from the
chunk.

Split the remaining chunk into two parts, where part2 starts with the
first <!-- or /* found. If either exists, remove further content from

part2 except for that symbol.

Useful Node.js APIs 252

4

5

If neither is found, split at the last carriage return character. If none is found,
set part1 to an empty string and part2 to the whole chunk.

If part2 becomes significantly large—perhaps more than 100,000
characters because there are no carriage returns—append part2 to part1

and set part2 to an empty string. This will ensure saved parts can’t grow
indefinitely.

Minify and output part1 .

Save part2 (which is added to the start of the next chunk).

The process runs again for each incoming chunk.

That’s your next coding challenge—if you’re willing to accept it!

Worker Threads

Chapter 9 discussed how Node.js applications run on a single thread. Assume
a user could trigger a complex, ten-second JavaScript calculation in your
Express application. The calculation would become a bottleneck that halted
processing for all users. Your application can’t handle any requests or run
other functions until it completes.

Asynchronous Calculations

Complex calculations that process data from a ?le or database may

be less problematic, because each stage runs asynchronously as it

waits for data to arrive. Processing occurs on separate iterations of

the event loop.

However, long-running calculations written in JavaScript

alone—such as image processing or machine-learning

algorithms—will hog the current iteration of the event loop.

253 Node.js: Novice to Ninja

One solution is worker threads. These are similar to browser web workers and
launch a JavaScript process on a separate thread. The main and worker thread
can exchange messages to trigger or terminate processing.

The example code has a worker project that exports a diceRun() function in
lib/dice.js . This throws any number of N-sided dice a number of times and

records a count of the total score (which should result in a Normal distribution
curve):

// dice throwing
export function diceRun(runs = 1, dice = 2, sides = 6) {

const stat = [];

while (runs > 0) {

let sum = 0;
for (let d = dice; d > 0; d--) {
sum += Math.floor(Math.random() * sides) + 1;

}

stat[sum] = (stat[sum] || 0) + 1;

runs--;
}

return stat;

}

The code in index.js starts a process that runs every second and outputs a
message:

Workers and Event Loops

Workers are useful for CPU-intensive JavaScript operations,

although the main Node.js event loop should still be used for

asynchronous I/O activities.

Useful Node.js APIs 254

https://nodejs.org/dist/latest/docs/api/worker_threads.html
https://developer.mozilla.org/docs/Web/API/Web_Workers_API
https://github.com/spbooks/ultimatenode1/tree/main/ch12/worker
https://en.wikipedia.org/wiki/Normal_distribution
https://en.wikipedia.org/wiki/Normal_distribution

// run process every second
const timer = setInterval(() => {
console.log(' another process');

}, 1000);

Two dice are then thrown one billion times using a standard call to the
diceRun() function:

import { diceRun } from './lib/dice.js';

// throw 2 dice 1 billion times
const
numberOfDice = 2,
runs = 999_999_999;

const stat1 = diceRun(runs, numberOfDice);

This halts the timer, because the Node.js event loop can’t continue to the next
iteration until the calculation completes.

The code then tries the same calculation in a new Worker . This loads a script
named worker.js and passes the calculation parameters in the workerData

property of an options object:

import { Worker } from 'worker_threads';

const worker = new Worker('./worker.js', { workerData: { runs, numberOfDice } });

Event handlers are attached to the worker object running the worker.js

script so it can receive incoming results:

// result returned
worker.on('message', result => {
console.table(result);

});

… and handle errors:

255 Node.js: Novice to Ninja

https://nodejs.org/dist/latest/docs/api/worker_threads.html#new-workerfilename-options

// worker error
worker.on('error', e => {
console.log(e);

});

… and tidy up once processing has completed:

// worker complete
worker.on('exit', code => {

// tidy up

});

The worker.js script starts the diceRun() calculation and posts a message
to the parent when it’s complete—which is received by the "message" handler
above:

// worker thread
import { workerData, parentPort } from 'worker_threads';
import { diceRun } from './lib/dice.js';

// start calculation
const stat = diceRun(workerData.runs, workerData.numberOfDice);

// post message to parent script
parentPort.postMessage(stat);

The timer isn’t paused while the worker runs, because it executes on another
CPU thread. In other words, the Node.js event loop continues to iterate
without long delays.

Run the project code with node index.js .

Useful Node.js APIs 256

12-4. The worker output

You should note that the worker-based calculation runs slightly faster because
the thread is fully dedicated to that process. Consider using workers if you
encounter performance bottlenecks in your application.

View the demonstration video to see the code in action.

Child Processes

It’s sometimes necessary to call applications that are either not written in
Node.js or have a risk of failure.

257 Node.js: Novice to Ninja

https://vimeo.com/707861063/783a9237e7

The child process API allows you to run sub-processes that you can monitor
and terminate as necessary. There are three options:

spawn : spawns a child process.
fork : a special type of spawn that launches a new Node.js process.
exec : spawns a shell and runs a command. The result is buffered and

returned to a callback function when the process ends.

Unlike worker threads, child processes are independent from the main Node.js
script and can’t access the same memory.

Clusters

Is your 64-core server CPU under-utilized when your Node.js application runs
on a single core? Clusters allow you to fork any number of identical processes
to handle the load more efficiently.

The initial primary process can fork itself—perhaps once for each CPU
returned by os.cpus() . It can also handle restarts when a process fails, and

A Real-world Example

I worked on an Express application that generated a fuzzy image

hash used to identify similar graphics. It ran asynchronously and

worked well—until someone uploaded a malformed GIF containing

a circular reference (animation frameA referenced frameB which

referenced frameA).

The hash calculation never ended. The user gave up and tried

uploading again. And again. And again. The whole application

eventually crashed with memory errors.

The problem was ?xed by running the hashing algorithm in a child

process. The Express application remained stable because it

launched, monitored, and terminated the calculation when it took

too long.

Useful Node.js APIs 258

https://nodejs.org/dist/latest/docs/api/child_process.html
https://nodejs.org/dist/latest/docs/api/child_process.html#child_processspawncommand-args-options
https://nodejs.org/dist/latest/docs/api/child_process.html#child_processforkmodulepath-args-options
https://nodejs.org/dist/latest/docs/api/child_process.html#child_processexeccommand-options-callback
https://nodejs.org/dist/latest/docs/api/cluster.html
https://nodejs.org/dist/latest/docs/api/cluster.html#clusterisprimary
https://nodejs.org/dist/latest/docs/api/os.html#oscpus

broker communication messages between forked processes.

Clusters work amazingly well, but your code can become complex. Simpler
and more robust options include:

process managers such as PM2, which offer an automated Cluster Mode
a container management system such as Docker or Kubernetes

Both can start, monitor, and restart multiple isolated instances of the same
Node.js application. The application will remain active even when one fails.

Exercises

Browse the Readline API documentation and write a small console application
that prompts the user for their name before displaying a “Hello <name>”
greeting.

Examine the Performance hooks API documentation to discover how you can
monitor and improve code efficiency. The worker threads code (from the
“Worker Threads” section above) illustrates basic use of performance marks
and measurements.

For big bonus points, improve the stream example (from the “Streams”
section) to parse incoming data chunks, as discussed above.

Summary

This chapter has provided a sample of the more useful Node.js APIs, but I

Write Stateless Applications

This was mentioned in Chapter 3, but it’s worth reiterating: make
your application stateless to ensure it can scale and be more
resilient. It should be possible to start any number of instances and

share the processing load.

259 Node.js: Novice to Ninja

https://pm2.keymetrics.io/
https://pm2.keymetrics.io/docs/usage/cluster-mode/
https://www.docker.com/
https://kubernetes.io/
https://nodejs.org/dist/latest/docs/api/readline.html
https://nodejs.org/dist/latest/docs/api/perf_hooks.html
https://nodejs.org/dist/latest/docs/api/perf_hooks.html#performancemarkname-options
https://nodejs.org/dist/latest/docs/api/perf_hooks.html#performancemeasurename-startmarkoroptions-endmark

encourage you to browse the documentation and discover them for yourself.
The documentation is generally good and shows simple examples, but it can
be terse in places. Where necessary, search for more thorough tutorials on
SitePoint.

The next chapter will build on your Node.js knowledge to develop a real-time,
multiuser quiz application.

Quiz

1. The process object provides:

a. a way to launch a new thread
b. information about your application and environment
c. tools to manage application execution
d. all of the above

2. The File System API is named:

a. filesystem

b. file-system

c. fsystem

d. fs

3. Objects that emit events:

a. are instances of the EventEmitter class
b. run an emit() method
c. provide on() event handlers
d. all of the above

4. A Node.js stream provides:

a. data processing on smaller more manageable chunks
b. custom event management

Useful Node.js APIs 260

https://nodejs.org/dist/latest/docs/api/
https://www.sitepoint.com/

c. processing threads management
d. asynchronous function management

5. Worker threads are best used to run:

a. asynchronous I/O activities
b. CPU-intensive JavaScript operations
c. non-Node.js applications
d. child processes

261 Node.js: Novice to Ninja

Example
Real-time

Multiplayer
Quiz:

Overview

Chapter

13

Example Real-time Multiplayer Quiz: Overview 262

This chapter demonstrates a real-time multiplayer quiz written in Node.js. The
application is a step up from the simpler, self-contained examples shown in
previous chapters. It has a more complex architecture, but it isn’t using any
modules or techniques you haven’t seen before. I recommend that you
progress through the explanations at your own pace and examine the code in
an editor so you can follow what’s happening.

The game allows any player to start a new quiz using their own configuration
options—such as the number of questions, scoring, time limits, and so on. Any
number of other players can join that quiz using a unique code.

Any number of quiz games can be running concurrently. Players may be
connected to different HTTP and WebSocket servers, which must keep
themselves synchronized as events occur.

This chapter describes how to run and play the game. The following chapters
will cover these topics:

the application’s architecture (Chapter 14)
the Express code (Chapter 15)
the WebSocket code (Chapter 16)

Source Code

The source code is provided in the code/ch13/nodequiz/ directory, although
you may find it more practical to pull the repository from github.com/
craigbuckler/nodequiz using the following Git command:

git clone https://github.com/craigbuckler/nodequiz

Quizzing Quick Start

The application uses Docker and Docker Compose to download and run
Node.js and database servers.

263 Node.js: Novice to Ninja

https://github.com/spbooks/ultimatenode1/tree/main/ch13/nodequiz
https://github.com/craigbuckler/nodequiz
https://github.com/craigbuckler/nodequiz
https://docs.docker.com/get-docker/
https://docs.docker.com/compose/install/

Once you’ve installed Docker, navigate to the project root directory
(nodequiz) and start the application in development mode with docker-

compose up .

All software dependencies download and initialize, so the first run can take
several minutes. The terminal shows a log of database and server activities.

Once started, access the quiz in a browser at http://quiz.localhost/.

What is Docker?

Docker provides a way to quickly install, con?gure, and run

applications such as databases. Each application launches in an

isolated environment known as a container. It behaves a little like a

Linux virtual machine, but it’s lightweight and requires no ongoing

maintenance.

Docker Compose can run any number of containerized applications

from a single command. This makes it ideal for managing web

application dependencies, and it behaves identically on all

platforms—whether you’re using Windows, macOS, or Linux. A

similar environment can also be deployed to a production server.

The Docker for Web Developers book and a video course are

available from SitePoint if you want to learn more.

Example Real-time Multiplayer Quiz: Overview 264

https://www.sitepoint.com/premium/books/docker-for-web-developers/
https://www.sitepoint.com/premium/courses/docker-for-web-developers-3111
https://dockerwebdev.com/tutorials/install-docker/
http://quiz.localhost/

13-1. Starting the quiz application

You must import some questions before starting a quiz, so click Import
questions... to retrieve a selection from the Open Trivia Database—which is a
free-to-use, user-contributed trivia question database. You’re then prompted
to JOIN an existing game.

265 Node.js: Novice to Ninja

https://opentdb.com/

13-2. Joining the quiz

Or you can START a new game.

Example Real-time Multiplayer Quiz: Overview 266

13-3. Starting a quiz

Any number of games can be running concurrently with different
configurations, leading to different strategies based on time limits and
whether you guess or decline to answer a question.

Once started, a game is assigned a unique code—such as a23, as shown
below. Others can join this game by entering the code on the JOIN screen and
entering the lobby.

267 Node.js: Novice to Ninja

13-4. Joining the quiz

Any player can start the game, which progresses to the first question. A
countdown timer starts after the first person has answered so everyone else
must respond within the allotted time.

Example Real-time Multiplayer Quiz: Overview 268

13-5. Answering a question

The score is displayed between questions and at the end of the game. A timer
indicates that the next question is coming.

269 Node.js: Novice to Ninja

13-6. Viewing the quiz score

To shut down the quiz, navigate to the project root directory (nodequiz) in
another terminal and run docker-compose down .

View the demonstration video to see the game running.

Summary

The quiz is developed in Node.js using a few third-party modules, vanilla ES6,
and less than 60KB of code. It’s also scalable: you can add more Node.js HTTP
and WebSocket servers as traffic increases. This leads to some considerable
software engineering challenges, which we’ll discuss in the next chapter.

Example Real-time Multiplayer Quiz: Overview 270

https://vimeo.com/707861186/54bfc2d363

Example
Real-time

Multiplayer
Quiz:

Architecture

Chapter

14

271 Node.js: Novice to Ninja

This chapter describes the quiz application’s architecture and dependencies. It
does get complex, so you can skip it if you’d rather concentrate on the Node.js
and Express parts (Chapter 15) and WebSocket code (Chapter 16). That said,
technical decisions described in those chapters are based on the architecture,
so it’s good to understand the basics.

Why Develop Using Multiple Servers?

You could develop and run the quiz on a single server running a database and a
single Node.js application that launches both the HTTP and WebSocket
servers. It would be easier to develop, and it would support dozens of
concurrent users. However, problems will arise as traffic grows. If your
application crashes, it fails for everyone, and it’s difficult to scale the quiz:

Node.js applications run on a single CPU core.

Using a multi-core CPU has negligible benefit: Node.js will use one. You
could use clustering (see Chapter 12), but it’s a considerable coding effort,
and you’re still limited to the number of physical CPUs.

You can’t launch multiple application instances.

A process manager such as PM2 can launch multiple isolated instances of
your application on different domains and/or HTTP ports. Two players
wanting to join the same quiz would have to ensure they’re connected to
the same instance.

The quiz therefore uses a multi-server architecture running at least seven
individual stateless applications. New Node.js application instances can be
started on the same server—or even different servers—and the they’ll start to
handle incoming traffic. A server can fail and restart without noticeable
downtime.

The only reliable way to develop this application is to use an appropriate
architecture from the start.

Example Real-time Multiplayer Quiz: Architecture 272

https://nodejs.org/api/cluster.html
https://pm2.keymetrics.io/

Docker-Managed System

Player

Express.js HTTP...

Express.js HTTP...

Traefic Reverse... PostgreSQL...Web Socket...

Web Socket...

Web Socket...

14-1. The quiz application architecture

The video for this chapterand the following sections describe the setup.

1. One PostgreSQL Database Server

A single PostgreSQL database server implements a quiz database with the
following data tables:

question : question text
answer : answer text with correct/incorrect flags
game : individual game instances and configurations
player : players connected to each game
pubsub : data shared to all WebSocket servers when specific events occur

273 Node.js: Novice to Ninja

https://vimeo.com/707861327/f5cb3de305
https://www.postgresql.org/

14-2. The database schema

The database guarantees data integrity using constraints defined in the
schema. For example:

it’s impossible to add two questions with the same text

changing the id of a question automatically updates the question_id for
associated answer records
deleting a game record automatically deletes player and pubsub records
associated with that game

PostgreSQL was chosen for the project because it offers a
publisher–pubscriber (or pub–sub) service. It’s possible to trigger events when
an application changes database data (publishes), which can notify all
subscribers. This means we don’t require a dedicated pub–sub solution as
another dependency.

Example Real-time Multiplayer Quiz: Architecture 274

The .env file in the project root configures the database connectivity
credentials. The /db/001-quiz.sql file creates the table schema when
PostgreSQL is first launched.

Note that Express and WebSocket applications use the same Node.js module
defined at libshared/quizdb.js for all database activities.

2. Two Express HTTP Web Servers

An Express application handles:

importing questions from the Open Trivia Database
allowing a player to start a new game with specific defaults
allowing other players to join that game

It serves all the client-side HTML, CSS, and JavaScript files. Eventually, all
users on the same game end up at the URL /game/<gameCode>/<playerName>

where:

<gameCode> is a unique code for a specific quiz game
<playerName> is the player’s name

At this point, each user connects to a WebSocket server that controls further
interaction—such as starting and answering questions.

The system starts two isolated instances of the web server. This offers
improved performance and redundancy: if one web server fails, the other
remains active while the first restarts. An incoming HTTP request from any
user can be handled by either server.

The code is defined in the web directory. The .env configuration file and
libshared directory also provide code shared across all components.

275 Node.js: Novice to Ninja

http://expressjs.com/
https://opentdb.com/

1

2

3

3. Three WebSocket Servers

A WebSocket server uses the ws library to handle:

the initial connection from a player joining a game
starting the game for all connected players
sending questions and answers to all players
responding to player choices and keeping score
disconnecting users when they leave or the game completes

The system starts three isolated instances of the WebSocket server. This
offers improved performance and some redundancy. If a server fails, a game
should continue for those connected to a different server.

When a player connects, they remain connected to the same WebSocket
server throughout the duration of their session. However, two players on the
same quiz game could connect to different WebSocket servers!

Games are kept in sync using the pub–sub functionality in PostgreSQL:

When an event occurs on one WebSocket server, such as the user
answering a question, that server inserts a new record into the pubsub

table.

PostgreSQL activates a trigger, which sends an event containing the
new data to all WebSocket servers (the subscribers) running the same

instance of a specific game.

Each WebSocket server (including the one that originally received the
request) runs a handler that acts on the incoming event data.

The code is defined in the ws directory. The .env configuration file and
libshared directory also provide code shared across all components.

Example Real-time Multiplayer Quiz: Architecture 276

https://www.npmjs.com/package/ws

4. One Trae2c Load Balancer

Traefic is a reverse proxy and load balancer that directs all incoming HTTP and
WebSocket requests to the appropriate (and least-busy) server.

When the application is running, the Traefic dashboard can be accessed and
monitored at http://localhost:8080/.

5. Adminer Database Client

An (optional) Adminer database client is launched in development mode so
you can examine PostgreSQL table data. Access it at http://adminer.localhost/
with the following credentials:

System: PostgreSQL

Server: dbserver (or host.docker.internal or your PC’s IP address)
Username: quizuser

Password: quizpass

Database: quiz

If you’d rather use your preferred client application to access the database,
enter localhost as the Server name. Popular options including Beekeeper
Studio, DBeaver, and Postbird should be compatible.

Docker Development Environment

Installing, configuring, and launching all seven applications (eight with
Adminer) on a single server wouldn’t leave much time for development!
Fortunately, the whole environment can be managed with Docker so it starts
in a few seconds and still supports live Node.js restarts using nodemon .

For this reason, Docker is the only software dependency you need to install.
Even the Node.js runtime is managed by Docker.

A full Docker tutorial is beyond the scope of this book, but the web and ws

277 Node.js: Novice to Ninja

https://traefik.io/traefik/
http://localhost:8080/
https://www.adminer.org/
http://adminer.localhost/
https://beekeeperstudio.io/
https://beekeeperstudio.io/
https://dbeaver.io/
https://github.com/paxa/postbird
https://docs.docker.com/get-docker/
https://dockerwebdev.com/tutorials/install-docker/
https://www.sitepoint.com/premium/books/docker-for-web-developers/

directories have Dockerfile configurations (web.Dockerfile and
ws.Dockerfile), which tell Docker how to build and run the Express and

WebSocket applications from a lightweight Node.js 16 Alpine Linux base.

Both create a Docker image. You can think of it like a disk image containing all
the files, libraries, and executables required to run an application.

You can start any number of Docker image instances. A running instance is
known as a container. Think of it as an isolated Linux Virtual Machine that’s
running a single executable such as a database or Node.js application.

Launching a container requires a single docker run command. Fortunately,
Docker Compose can manage and run all containers using a development
environment configuration defined in docker-compose.yml . This does the
following:

Declares all containers, replicas, and restart policies.

Defines all environment variables from the .env file.

Attaches disk storage volumes so there’s no need to re-initialize the
database on every launch. It also mounts the libshared modules directory
in both the web and ws projects.

Overrides some Dockerfile settings to use nodemon and launch Node.js
debugging servers.

Connects all containers to the same internal Docker network.

Configures the Traefic load balancer.

Start the whole environment in development mode from the project’s root
directory:

Example Real-time Multiplayer Quiz: Architecture 278

https://docs.docker.com/compose/install/

docker-compose up

The terminal shows a live activity log and any errors. nodemon restarts the
web and ws applications whenever a JavaScript file is changed.

To gracefully shut down all applications, run the following command in another
terminal from the project root:

docker-compose down

Docker Production Environment

docker-compose-production.yml defines production-level settings, so the quiz
application can be run on a live server. The configuration is simpler, because
there’s no need to override Dockerfile settings or launch Adminer.

Start the application in production mode with:

docker-compose -f ./docker-compose-production.yml up

Summary

Setting up a development environment is complex, but the choices you make
at the start can affect the long-term success of your project. We’re now in a
good position to create a (mostly) stateless application, starting with the
Express server in the next chapter.

Is Docker Compose Suited to Production?

Probably not. It’s not ef?cient to run PostgreSQL in a container, and

there are better options such as Docker Swarm and Kubernetes to

manage containers across multiple servers. But that’s beyond the

scope of this and most Docker books!

279 Node.js: Novice to Ninja

https://docs.docker.com/engine/swarm/
https://kubernetes.io/

Example
Real-time

Multiplayer
Quiz: Express

Code

Chapter

15

Example Real-time Multiplayer Quiz: Express Code 280

The Express part of the quiz application:

imports questions from the Open Trivia Database
allows a player to create and start a new game with specific defaults
allows other players to join that game

It serves all the client-side HTML, CSS, and JavaScript files. Eventually, users
on the same game end up at the URL /game/<gameCode>/<playerName> , where
the WebSocket server (see Chapter 16) takes over and controls the gameplay.

Docker starts two isolated HTTP servers and a single request could be
directed to either by the Traefic load balancer. Even two requests from the
same user on the same page—such as a CSS and JavaScript file—could be
delivered by different servers. This is rarely an issue, because the web is
stateless by default: the application avoids storing state on one server that
wouldn’t be available on the other.

Before we delve into the Express code, we’ll take a look at the database code.

Database Library

PostgreSQL database connectivity is handled by the Node.js pg library (see
the documentation). This is loaded in the libshared/quizdb.js module, which
provides a selection of functions to INSERT , UPDATE , SELECT , and DELETE

records in the quiz database. The same module is used by both the web and
ws servers.

The code initially imports the pg library and defines integer type parsers. By
default, pg returns all record fields as strings, so a parser can convert it to the
correct type:

import pg from 'pg';

// data type parsers
pg.types.setTypeParser(pg.types.builtins.INT2, v => parseInt(v, 10));

281 Node.js: Novice to Ninja

https://opentdb.com/
https://www.npmjs.com/package/pg
https://node-postgres.com/
https://node-postgres.com/

pg.types.setTypeParser(pg.types.builtins.INT4, v => parseInt(v, 10));
pg.types.setTypeParser(pg.types.builtins.INT8, v => parseFloat(v));

The code then defines a “connection pool” using the environment variable
defaults:

const pool = new pg.Pool({
host: process.env.POSTGRES_SERVER,
port: process.env.POSTGRES_PORT,
database: process.env.POSTGRES_DB,
user: process.env.POSTGRES_QUIZUSER,
password: process.env.POSTGRES_QUIZPASS

});

A pool provides a reusable set of database connection clients you can check
out, use, release, and reuse. This has benefits including:

There’s no initial handshake delay when a client is reused.
Each client is a separate connection to the database. Unlike a single
connection, they can make simultaneous requests.

Here’s a basic parameterized SQL query example that returns all records from
the question table with an id between 1 and 10 using one of the pool
connections:

// DB connection
const client = await pool.connect();

try {
// fetch all questions with ids between 1 and 10
const result = await client.query(
'SELECT * FROM question WHERE id >= $1 AND id <= $2;',
[1, 10]

);
}
catch(err) {
console.log(err);

}
finally {

Example Real-time Multiplayer Quiz: Express Code 282

https://node-postgres.com/features/pooling

// release client
client.release();

}

The SQL SELECT string references $1 and $2 , which are substituted with
values in the first and second elements in the array. An array of row objects is
returned when the query executes successfully.

Creating individual SQL commands can be cumbersome, and it’s easy to miss
or transpose array parameters. The libshared/quizdb.js module has private
dbSelect() , dbInsert() , dbUpdate() , and dbDelete() functions, which

make development easier. For example, the public playerCreate() function is
used when adding a new player record for a specific game:

// create a new player
export async function playerCreate(game_id, name) {

return await dbInsert({
table: 'player',
values: { game_id, name },
return: 'id'

});

}

This calls the private dbInsert() function with a table name, a values

object containing name/value pairs, and a return to fetch the id of the
added record. The dbInsert() function returns the added id or false

when an error occurs:

// database INSERT
// pass object: { table: <tablename>, values: <{ n1: v1,... }>, return: <field> }
async function dbInsert(ins) {

const
ret = ins.return ? ` RETURNING ${ ins.return }` : '',
key = Object.keys(ins.values),
sym = key.map((v,i) => `$${i + 1}`),

283 Node.js: Novice to Ninja

sql = `INSERT INTO ${ ins.table } (${ key.join() }) VALUES(${ sym.join() })
➥${ ret };`,
client = ins.client || await pool.connect();

let success = false;

try {

// run insert
const i = await client.query(sql, Object.values(ins.values));

// successful?
success = i.rowCount === 1;

// return value?
if (success && ins.return) {
success = i.rows[0][ins.return];

}

}
catch(err) {
}
finally {
if (!ins.client) client.release();

}

return success;

}

The const values at the top are responsible for creating the SQL string:

INSERT INTO player (game_id, name) VALUES ($1, $2) RETURNING id;

There are four things to note here:

key defines an array of property names extracted from the values

object.
sym defines an array of $1 to $N strings, which match the number of

items in the key array.
The property values from values are passed to the SQL query using

Example Real-time Multiplayer Quiz: Express Code 284

Object.values(ins.values) .
The calling function can pass its own pool.connect() object. This is
necessary when it’s running a series of updates in a database transaction.

The private dbUpdate() method is similar, although it also receives a where

object with name/value pairs to create an SQL string, such as:

UPDATE game SET time_started=$1 WHERE game_id=$2;

The function ensures the names and values resolve correctly:

// database UPDATE
// pass object: { table: <tablename>, values: <{ n1: v1,... }>,
// where: <{ n1: v1,... }> }
async function dbUpdate(upd) {

const
sym = [...Object.values(upd.values), ...Object.values(upd.where)],
vkey = Object.keys(upd.values),
val = vkey.map((k, i) => `${ k }=$${ i + 1 }`),
ckey = Object.keys(upd.where),
cond = ckey.map((k, i) => `${ k }=$${ i + val.length + 1 }`),
sql = `UPDATE ${ upd.table } SET ${ val.join() } WHERE ${ cond.join() };`,
client = upd.client || await pool.connect();

let updated = 0;

try {

// run update
const u = await client.query(sql, sym);

// successful?
updated = u.rowCount;

}
catch(err) {
}
finally {
if (!upd.client) client.release();

285 Node.js: Novice to Ninja

}

return updated;

}

Record deletion SQL is simpler. For example:

DELETE FROM game WHERE id=$1;

Therefore, so is the dbDelete() function:

// database delete
// pass object: { table: <tablename>, where: <{ n1: v1,... }> }
// logical AND is used for all where name/value pairs
async function dbDelete(del) {

const
key = Object.keys(del.values).map((v, i) => `${ v }=$${ i+1 }`),
sql = `DELETE FROM ${ del.table } WHERE ${ key.join(' AND ') };`,
client = del.client || await pool.connect();

let deleted = false;

try {

// run delete
const d = await client.query(sql, Object.values(del.values));
deleted = d.rowCount;

}
catch(err) {
}
finally {
if (!del.client) client.release();

}

return deleted;

}

Example Real-time Multiplayer Quiz: Express Code 286

Finally, dbSelect() is the simplest function of all, since you must specify your
own sql string and array of arguments:

// database SELECT
// pass SQL string and array of parameters
async function dbSelect(sql, arg = []) {

const client = await pool.connect();

try {
const result = await client.query(sql, arg);
return result && result.rows;

}
catch(err) {
console.log(err);

}
finally {
client.release();

}

}

The reason is that SQL SELECT queries can be varied and complex. Some
database libraries provide object–relational mapping (ORM) methods to build
SQL query strings, but this would have been overkill for this project!

Question Database Initialization

Data is downloaded from the Open Trivia Database—a free-to-use repository
of user-contributed questions and answers with a REST API. Questions and
their associated answers are stored in the question and answer database
tables. This action can be initiated by a user when the quiz home page is
accessed for the first time.

287 Node.js: Novice to Ninja

https://www.sitepoint.com/premium/books/php-mysql-novice-to-ninja-7th-edition/read/12/kye1h4y2/
https://opentdb.com/
https://opentdb.com/api_config.php

The .env file defines environment variables—including database credentials
and QUIZ_QUESTIONS_MAX=500 —to limit the number of imported questions. The
web/index.js entry script loads modules and configures the Express server:

// Express
import express from 'express';
import compression from 'compression';

// modules
import { questionCount, gameCreate, gameFetch } from './libshared/quizdb.js';
import { questionsImport } from './lib/questionsimport.js';
import * as libId from './libshared/libid.js';

// configuration
const cfg = {
dev: ((process.env.NODE_ENV).trim().toLowerCase() !== 'production'),
port: process.env.NODE_PORT || 8000,
domain: process.env.QUIZ_WEB_DOMAIN,
wsDomain: process.env.QUIZ_WS_DOMAIN,
title: process.env.QUIZ_TITLE,
questionsMax: parseInt(process.env.QUIZ_QUESTIONS_MAX, 10)

};

// Express initiation
const app = express();

// use EJS templates
app.set('view engine', 'ejs');
app.set('views', 'views');

// GZIP
app.use(compression());

Initializing Data on Application Start?

The application could initialize the questions when the web server

starts. However, any number of application instances can be

launched and each would attempt to load questions. Making it into a

user request ensures only one server will load questions at a time.

Example Real-time Multiplayer Quiz: Express Code 288

// body parsing
app.use(express.urlencoded({ extended: true }));

By default, the home page / route fetches the number of questions in the
database using the questionCount() function in libshared/quizdb.js (see
the else block):

// home page
app.get('/', async (req, res) => {

if (typeof req.query.import !== 'undefined') {

// import new questions and redirect back
res.redirect(`/?imported=${ await questionsImport() }`);

}
else {

// home page template
res.render('home', {
title: cfg.title,
questions: await questionCount(),
questionsMax: cfg.questionsMax,
imported: req.query?.imported || null

});

}

});

This count and questionsMax is passed to an HTML view at web/views/

home.ejs . It shows a link to the home page with an /?import query string
when further questions can be loaded:

<% if (questions < questionsMax) { %>

<p>Import questions…</p>

<% } %>

289 Node.js: Novice to Ninja

When clicked, it reloads the home page with an ?import query string, which
triggers the if block above. This executes questionsImport() in web/lib/

questionsimport.js and returns the number of questions imported.

The code then redirects back to the home page with an ?imported=N query
string, which shows the number of imported questions. Assuming there’s at
least one question in the database, the web/views/home.ejs view displays the
START and JOIN game options:

<% if (questions) { %>

<section class="tabs">
<article id="new">
<h2>START A NEW GAME</h2>
<!-- more code -->

<% } %>

The questionsImport() function is a little long, so examine web/lib/

questionsimport.js in an editor. It uses a series of promise-based functions to
make up to ten concurrent calls to the Open Trivia API at https://opentdb.com/
api.php with Promise.allSettled() . Data is fetched using the node-fetch

module.

Why Does the Number of Imported Questions Vary?

The Open Trivia Database API returns a random set of questions.

Some may be duplicates of previously imported questions, but the

database’s question.text ?eld has a UNIQUE @ag to ensure a

question can only be added once.

Example Real-time Multiplayer Quiz: Express Code 290

https://opentdb.com/
https://opentdb.com/api.php
https://opentdb.com/api.php
https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Promise/allSettled
https://www.npmjs.com/package/node-fetch
https://www.npmjs.com/package/node-fetch

The Open Trivia API returns JSON data such as:

{
"response_code": 0,
"results": [
{
"category": "History",
"type": "multiple",
"difficulty": "medium",
"question": "The crown of the Empire State Building was originally built
➥for what purpose?",
"correct_answer": "Airship Dock",
"incorrect_answers": [
"Lightning Rod",
"Antennae",
"Flag Pole"

]
},
{
"category": "Entertainment: Cartoon & Animations",
"type": "multiple",
"difficulty": "easy",
"question": "Which of these is NOT a Disney cartoon character?",
"correct_answer": "Daffy Duck",
"incorrect_answers": [
"Donald Duck",
"Daisy Duck",
"Scrooge McDuck"

]
},
{
"category": "History",
"type": "multiple",

Native Node.js Fetch()

Deno usefully implements the browser Fetch API, so you can use it

in a server application. A similar Fetch API arrived in Node.js version

18, but it’s experimental. A third-party module is used here for

backward compatibility.

291 Node.js: Novice to Ninja

https://developer.mozilla.org/docs/Web/API/Fetch_API

"difficulty": "hard",
"question": "What was the original name of New York City?",
"correct_answer": "New Amsterdam",
"incorrect_answers": [
"New London",
"New Paris",
"New Rome"

]
}

]
}

This is converted to JavaScript values, formatted, and each question/answer
set is added to the database using a call to the questionAdd(question,

answer) function in libshared/quizdb.js . Each question and answer set is
inserted within a database transaction so that, if any SQL INSERT operation
fails, they all fail:

// add a new question and answer set
export async function questionAdd(question, answer) {

const client = await pool.connect();
let commit = false;

try {

// new transaction
await client.query('BEGIN');

// add question
const qId = await dbInsert({
client,
table: 'question',
values: {
text: question

},
return: 'id'

})

if (qId) {

Example Real-time Multiplayer Quiz: Express Code 292

// insert answers in sequence
let inserted = 0;
for (let item of answer) {

const a = await dbInsert({
client,
table: 'answer',
values: {
question_id: qId,
text: item.text,
correct: item.correct

}
});

if (a) inserted++;

}

// answers added?
commit = inserted === answer.length;

}

}
catch(err) {
}
finally {

// commit or rollback transaction
if (commit) {
await client.query('COMMIT');

}
else {
await client.query('ROLLBACK');

}

client.release();
}

return commit;

}

293 Node.js: Novice to Ninja

Starting a New Game

The web/views/home.ejs template defines an HTML form to configure and
start new games:

<form action="/newgame/" method="post">

<div class="formgrid">

<label for="namenew">your name:</label>
<div><input type="text" name="name" id="namenew" value="" minlength="1"
maxlength="10" pattern="[A-Za-z0-9]{1,10}" required /></div>

<label for="questions_asked">number of questions:</label>
<div><input type="number" name="questions_asked" id="questions_asked"
value="10" min="1" max="50" required /></div>

<label for="timeout_answered">time limit after first answer:</label>
<div><input type="number" name="timeout_answered" id="timeout_answered"
value="5" min="5" max="60" required /> seconds</div>

<label for="score_correct">score for correct answer:</label>
<div><input type="number" name="score_correct" id="score_correct" value="1"
min="-100" max="100" required /> points</div>

Sequential Database INSERTs

The code could run multiple database INSERT commands in a short

period. This is faster, but question and answer IDs would appear in a

seemingly random order in the database tables. For example, the

question record with an id of 1 could have associated answer

records with the id s 17, 22, 52, and 54.

This isn’t a problem for an indexed database, but it can make the

tables more dif?cult to read during development! For this reason,

questions and answers are inserted sequentially, one at a time. It

also means that ordering by answer.id returns an alphabetically

ordered list without requiring an additional answer.order ?eld.

Example Real-time Multiplayer Quiz: Express Code 294

<label for="score_fastest">bonus for fastest player:</label>
<div><input type="number" name="score_fastest" id="score_fastest" value="1"
min="-100" max="100" required /> points</div>

<label for="score_incorrect">score for incorrect answer:</label>
<div><input type="number" name="score_incorrect" id="score_incorrect"
value="-1" min="-100" max="100" required /> points</div>

<label for="score_noanswer">score for no answer:</label>
<div><input type="number" name="score_noanswer" id="score_noanswer" value="0"
min="-100" max="100" required /> points</div>

</div>

<button>ENTER QUIZ LOBBY…</button>

</form>

The form HTTP POSTs data to the /newgame/ URL, which is handled by the
route defined in web/index.js :

// create a new game
app.post('/newgame', async (req, res) => {

const
gameId = await(gameCreate(req.body)),
playerName = libId.clean(req.body.name);

if (gameId === null) {

// game creation error?
res.status(500).render('error', {
title: cfg.title,
error: 'Game could not be started?'

});

}
else {

// redirect to game page using slug and user name
res.redirect(`/game/${ libId.encode(gameId) }/${ playerName }`);

295 Node.js: Novice to Ninja

}

});

The code calls the gameCreate() function in libshared/quizdb.js and
passes the req.body object containing the form data. This inserts a new
record into the database game table and returns its id —by calling the private
dbInsert() function (shown above in the “Database Library” section):

// create a new game
export async function gameCreate(data) {

const qCount = await questionCount();

return await dbInsert({
table: 'game',
values: {
question_offset : Math.floor(Math.random() * qCount), // random start q
questions_asked : clamp(1, data.questions_asked, 50),
timeout_answered: clamp(5, data.timeout_answered, 60),
score_correct : clamp(-100, data.score_correct, 100),
score_fastest : clamp(-100, data.score_fastest, 100),
score_incorrect : clamp(-100, data.score_incorrect, 100),
score_noanswer : clamp(-100, data.score_noanswer, 100)

},
return: 'id'

});

}

Note the following:

Each game record has a unique id integer which identifies the game.

The number can become long and is easy to guess. If you’re currently
playing game 99 , you could try joining game 100 or 101 and have a high
success rate.

For this reason, game IDs are encrypted into a string using encode() and

Example Real-time Multiplayer Quiz: Express Code 296

decode() in libshared/libid.js . This string also avoids using similar-
looking characters such as zero and uppercase “o” or one and uppercase
“i”.

A player can then tell others to join game a23 rather than game 1 .

clamp() is a private function that ensures a value is between a lower and
upper limit:

// return integer between low and high values
function clamp(min = 0, value = 0, max = 0) {

return Math.max(min, Math.min(parseInt(value || '0', 10) || 0,
➥max));

}

game.question_offset defines the starting question. It’s set to a random
number between 0 and the number of database questions.

game.time_created is automatically set to the date/time the game was
created by the database (time_created timestamp NOT NULL DEFAULT
NOW()).

game.time_started is initially NULL , but is eventually set to the date/time
the game is started. This value is checked when you join a game to ensure
players can’t jump in mid-way through a quiz.

Assuming a game record is created, the browser redirects the user to the URL
/game/<gameCode>/<playerName> —such as /game/a23/Craig . A failure shows a

message using the view at web/views/error.ejs .

Joining a Game

The web/views/home.ejs template also defines an HTML form for joining a
game that HTTP POSTs the user’s name and game code to the /joingame/

297 Node.js: Novice to Ninja

route:

<form action="/joingame/" method="post">

<div class="formgrid">

<label for="namejoin">your name:</label>
<div><input type="text" name="name" id="namejoin" value="" minlength="1"
maxlength="10" pattern="[A-Za-z0-9]{1,10}" required /></div>

<label for="slug">game code:</label>
<div><input type="text" name="slug" id="slug" value="" minlength="3"
maxlength="8" autocomplete="off" required /></div>

</div>

<button>ENTER QUIZ LOBBY…</button>

</form>

The form HTTP POSTs data to the /joingame/ URL, which is handled by the
route defined in web/index.js :

// join an existing game
app.post('/joingame', (req, res) => {

// redirect to game page using slug and user name
res.redirect(`/game/${ libId.clean(req.body.slug).toLowerCase() || 'x' }/${
➥ libId.clean(req.body.name) }`);

});

This receives the data, cleans the strings, and redirects the user to the URL
/game/<gameCode>/<playerName> —such as /game/a23/Craig .

Quiz Page

All players starting or joining a game reach the URL
/game/<gameCode>/<playerName> , where:

Example Real-time Multiplayer Quiz: Express Code 298

<gameCode> is the unique code for a specific quiz game
<playerName> is a player’s name

This is handled by the Express routing function at web/index.js :

// game page
app.get('/game/:slug/:name', async (req, res) => {

// get game ID and player name
const
slug = req.params.slug,
gameId = libId.decode(slug),
game = gameId === null ? null : await gameFetch(gameId),
gameValid = game && gameId === game.id,
playerName = libId.clean(req.params.name) || 'Player';

if (gameValid && game.time_started === null) {

// game open for players
res.render('game', {
domain: cfg.domain,
wsDomain: cfg.wsDomain,
slug,
title: cfg.title,
game,
playerName

});

}
else {

// game has been started or is invalid
const url = `${ cfg.domain }/game/${ slug }`;

res.status(gameValid ? 403 : 404).render('error', {
title: cfg.title,
error: gameValid ? `You were too late to join the game at ${ url }` : `The
➥game at ${ url } is not valid. Did you enter it correctly?`

});

}

299 Node.js: Novice to Ninja

});

The function decodes the game code to an integer and fetches the game
information from the database by calling gameFetch() in libshared/

quizdb.js :

// fetch game data
export async function gameFetch(gameId) {

const game = await dbSelect('SELECT * FROM game WHERE id=$1;', [gameId]);
return game?.[0];

}

Assuming the game ID is valid and the game’s time_started value is NULL ,
the code renders the template at web/views/game.ejs . Configuration
variables are passed to a client-side script in the template:

<script type="module">
window.cfg = {
wsDomain: '<%= wsDomain %>',
gameId: <%= game.id %>,
playerName: '<%= playerName %>'

};
</script>
<script type="module" src="/js/main.js"></script>

This configures values used in the client-side script at web/static/js/

main.js .

When necessary, errors are shown using the template at web/views/

error.ejs :

An invalid game ID returns an HTTP 404 Not found error.
A started game (where time_started is not NULL) returns an HTTP 403
Forbidden error.

Example Real-time Multiplayer Quiz: Express Code 300

Summary

The Express part of the application illustrates how URL routes can be resolved
to trigger server-side functionality.

At this point, all players joining a game have loaded the web/views/game.ejs

template. All further quiz game processing is now handled using client-side
JavaScript and WebSocket server messaging (see Chapter 16). Express has
completed its job!

301 Node.js: Novice to Ninja

Example
Real-time

Multiplayer
Quiz:

WebSocket
Code

Chapter

16

Example Real-time Multiplayer Quiz: WebSocket Code 302

Chapter 11 introduced WebSockets, which establish a two-way interactive
communication channel between a client browser and server.

Our quiz application starts three WebSocket servers, and there’s no limit to
the number of servers that could be started. However:

A user will connect to a single server and remain connected to it
throughout their session.
Two users on the same game could be connected to different WebSocket
servers.

Messages sent to and from the WebSocket server are typically simple strings,
but we have the added challenge of coordinating messages across all servers!

Initiating a WebSocket Connection

The client-side JavaScript at web/static/js/main.js initiates a connection to
the WebSocket server’s address and sends a gameInit message when it’s
established. Note that window.cfg.wsDomain , window.cfg.gameId , and
window.cfg.playerName are values passed by Express to the web/views/

game.ejs template:

// client-side code
// handle WebSocket communication
const ws = new WebSocket(window.cfg.wsDomain);

// connect to server and send game ID and initial player name
ws.addEventListener('open', () => {
sendMessage('gameInit', { gameId: window.cfg.gameId, playerName: window.cfg.
➥playerName });

});

// send message
function sendMessage(type, data = null) {
ws.send(`${ type }:${ JSON.stringify(data) }`);

}

An event handler function can now receive incoming messages from the

303 Node.js: Novice to Ninja

WebSocket server:

// receive message
ws.addEventListener('message', e => {

// process...

});

The server-side script at ws/index.js initializes a ws library WebSocketServer

object and listens for new client connections and incoming messages:

// server
ws = new WebSocketServer({ port: cfg.wsPort, perMessageDeflate: false });

// client connected
ws.on('connection', (socket, req) => {

console.log(`connection from ${ req.socket.remoteAddress }`);

// message received from client
socket.on('message', async (msg) => {

// process...

});

}

WebSocket Message Format

The quiz application uses the same format for all WebSocket messages sent
by the client or server. An identifying type string is followed by a colon
character and payload data in JSON format:

messageType:{ jsondata }

For example, the gameInit message shown above passes the game ID and

Example Real-time Multiplayer Quiz: WebSocket Code 304

https://www.npmjs.com/package/ws

player name to the server shortly after initiating the WebSocket connection:

gameInit:{ "gameId": "a23", "playerName": "Craig" }

When receiving a message from a player, the WebSocket server may perform
some actions immediately. However, most messages are forwarded to all
WebSocket servers where users are connected to the same game. Each
WebSocket server (including the one that originally received the message)
then process the message and, in most cases, transmits it back to its
connected clients where DOM and game state updates occur.

M

M

M

PostgreSQL

message M...

M

Web Socket...

M

Web Socket...

M

Web Socket...

message M...

Player 1

Player 2

Player 3

pubsub...

16-1. Quiz WebSocket messaging

PostgreSQL Pub–sub

Messages are broadcast to all WebSocket servers using PostgreSQL’s
pub–sub functionality. The pubsub table has the following fields:

305 Node.js: Novice to Ninja

id : an auto-incrementing integer
game_id : the (non-encoded) game ID integer (a foreign key for the
game.id)
type : the type of message
data : the message payload in fast JSONB binary format
queued : the current timestamp

When a single WebSocket server wants to share an event, it inserts a new
record into the pubsub table using a broadcast() function in libshared/

quizdb.js :

// broadcast an event
export async function broadcast(game_id, type, data) {

return await dbInsert({
table: 'pubsub',
values: { game_id, type, data },
return: 'id'

});

}

A database trigger named pubsub_insert_trigger calls a
sub_insert_notify() function whenever a record is inserted into the pubsub

table. This executes a PostgreSQL pg_notify() command, which sends the
record to all subscribers:

CREATE OR REPLACE FUNCTION pubsub_insert_notify()
RETURNS trigger AS

$BODY$
BEGIN
PERFORM pg_notify('pubsub_insert', row_to_json(NEW)::text);
RETURN NULL;

END;
$BODY$
LANGUAGE plpgsql VOLATILE
COST 100;

Example Real-time Multiplayer Quiz: WebSocket Code 306

CREATE TRIGGER "pubsub_insert_trigger"
AFTER INSERT ON public.pubsub FOR EACH ROW
EXECUTE FUNCTION pubsub_insert_notify();

A PubSub object, which extends the Node.js EventEmitter class, is defined in
libshared/quizdb.js :

// pubsub event emitter
class PubSub extends EventEmitter {

constructor(delay) {
super();

}

async listen() {

if (this.listening) return;
this.listening = true;

const client = await pool.connect();

client.on('notification', event => {

try {
const payload = JSON.parse(event.payload);
if (payload) {

this.emit(
`event:${ payload.game_id }`,
{
gameId: payload.game_id,
type: payload.type,
data: payload.data

}
);

}
}
catch (e) {
}

});

307 Node.js: Novice to Ninja

https://nodejs.org/dist/latest/docs/api/events.html#class-eventemitter

client.query('LISTEN pubsub_insert;');

}

}

A single object instance named pubsub is instantiated and exported. The
listen() method is called, which connects to the database and defines a

handler function when a notification event occurs. This emits a Node.js
event named event:<gameId> with a payload object containing the gameId ,
type string, and JSON-parsed data object:

export const pubsub = new PubSub();
await pubsub.listen();

Game instances on each server then subscribe to event:<gameId> event
using the pubsub.on method:

import * as db from '../libshared/quizdb.js';

// abbreviated code
class Game {

#handlerFunction = async e => await this.#eventHandler(e);

// initialize game
async create(gameId) {

this.gameId = gameId;

// monitor incoming events
db.pubsub.on(`event:${ this.gameId }`, this.#handlerFunction);

}

}

The private #eventHandler() function is called when an event occurs. It
receives the incoming data and can react accordingly:

Example Real-time Multiplayer Quiz: WebSocket Code 308

https://nodejs.org/dist/latest/docs/api/events.html#emitteremiteventname-args
https://nodejs.org/dist/latest/docs/api/events.html#emitteremiteventname-args

// incoming event sent to all game servers
async #eventHandler({ gameId, type, data }) {

console.log('Shared server event', type, data);
// ...

// handle server event (on all servers)
switch (type) {
//...

}

}

Game Logic

This section provides an overview of the game logic as it progresses from
joining, to starting, playing, and finishing a quiz. Note the following:

The client-side JavaScript at web/static/js/main.js sends messages
from a client to the WebSocket server when an event occurs—such as
answering a question.

The WebSocket server-side JavaScript at ws/index.js receives a
message from a client and executes appropriate functionality. In most
cases, messages are broadcast to all WebSocket servers running the same
game. They receive the data and transmit it back to all connected clients
on that game.

The client-side JavaScript at web/static/js/main.js receives incoming
messages and updates the DOM or game state accordingly.

The HTML <body> class is set to the incoming message type. This can
trigger CSS to show or hide specific elements according to the game state.

In some cases, an action occurring on a client does nothing until it has been
received back from the server after it has been transmitted to all WebSocket
servers and their connected clients!

309 Node.js: Novice to Ninja

Joining a Game

When a player accesses a valid game at the URL
/game/<gameCode>/<playerName> —such as /game/a23/Craig —the client

establishes a WebSocket connection with a single server and sends a
gameInit message. For example:

gameInit:{ "gameId": "a23", "playerName": "Craig" }

This triggers the message event handler function on a WebSocket Server,
which initiates the game (the if block):

// message received from client
socket.on('message', async (msg) => {

// parse message
msg = parseMessage(msg);

// initialize player and game
if (!player && msg.type === 'gameInit' && msg.data) {

player = new Player();
const pId = await player.create(msg.data.gameId, msg.data.playerName,
➥socket);
if (!pId) player = null;

}
else {

// pass message to game object
msg.data = msg.data || {};
msg.data.playerId = player.id;
await player.game.clientMessage(msg);

}

});

A new Player object is created using the class defined in ws/lib/player.js .
Its create(gameId, playerName, socket) method is run:

Example Real-time Multiplayer Quiz: WebSocket Code 310

// initialize new player
async create(gameId, playerName, socket) {

// player properties
this.name = playerName;
this.#socket = socket;

// initialize game
this.gameId = gameId;
this.game = await GameFactory(gameId);
if (!this.game) return null;

// send existing players to new player
this.send('player', this.game.playerAll())

// create this player
this.id = await db.playerCreate(this.gameId, playerName);
if (!this.id) return null;

// add player to game
this.game.playerAdd(this);

return this.id;

}

Player objects keep track of the user’s ID, game ID, name, score, and the
WebSocket connection is used by the send() method to send a message to
an individual player:

// send message to player

Why Run a create() Method?

The Player class has a constructor function that runs when an

instance of an object is created. Unfortunately, constructor

functions can’t be asynchronous, so it’s necessary to run another

method to handle initialization.

311 Node.js: Novice to Ninja

send(type = 'ws', data = {}) {

if (this.#socket) {
this.#socket.send(`${ type }:${ JSON.stringify(data) }`);

}

}

Player create() passes the gameId to a GameFactory() function defined in
ws/lib/game.js :

// active games
const gameActive = new Map();

// create and manage active game objects
export async function GameFactory(gameId) {

// game instance not exists?
if (!gameActive.has(gameId)) {

// create new game instance
const game = new Game();
if (await game.create(gameId)) {
gameActive.set(gameId, game);

}

console.log(`Game ${ gameId } added - active games on this server: ${
➥gameActive.size }`);

}

return gameActive.get(gameId) || null;

}

Game objects keep track of the game state and connected players. They’re
responsible for receiving a message from a single client, broadcasting that
message to all WebSocket servers, and receiving the message back again,
and sending it to all connected clients on the same game.

The GameFactory() function creates and returns a new Game object when the

Example Real-time Multiplayer Quiz: WebSocket Code 312

first player joins a specific game on each WebSocket server. This object is
referenced in a gameActive JavaScript Map using the game ID integer as the
reference. All subsequent players to join the same game on the same
WebSocket server receive the same Game object.

Next, the joining client is sent a player message with an array of all existing
player IDs and names (from the Game object’s playerAll() method). When
received, an init() function in the client-side web/static/js/player.js

script adds each player to an HTML <table> and stores DOM references in a
Map named player :

// CLIENT-SIDE CODE
const
pList = document.getElementById('player'),
pNum = document.getElementById('pnum'),
player = new Map();

// add new players
export function init(pAll, showScore = false) {
clear(pList);
player.clear();
pAll.forEach(p => add(p, showScore));

}

// add a new player
export function add(p, showScore = false) {

if (!p.id || player.has(p.id)) return;

const item = document.createElement('tr');
(item.appendChild(document.createElement('th'))).textContent = p.name;
const info = item.appendChild(document.createElement('td'));
info.textContent = showScore ? p.score || 0 : 'joined';

const pObj = {
name: p.name,
node: pList.appendChild(item)

};
pObj.info = pObj.node.getElementsByTagName('td')[0];

313 Node.js: Novice to Ninja

https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Map

player.set(p.id, pObj);
pNum.textContent = player.size;

}

The player is now added to the player table in the database by calling the
playerCreate() function in libshared/quizdb.js :

// create a new player
export async function playerCreate(game_id, name) {

return await dbInsert({
table: 'player',
values: { game_id, name },
return: 'id'

});

}

Assuming the player can be inserted into the database, the Player object
(this) is passed to the Game object’s playerAdd() method:

// add player to game
async playerAdd(player, broadcast = true) {

// add player to this server
this.player.set(player.id, player);

// broadcast event
if (broadcast) {

await db.broadcast(
this.gameId,
'playerAdd',
{ id: player.id, game_id: this.gameId, name: player.name }

);

}

}

Example Real-time Multiplayer Quiz: WebSocket Code 314

This broadcasts a playerAdd message with the new player’s ID, game ID, and
name to all WebSocket servers. These send it to all connected clients on the
same game (including the joining player). When received, the add() function
in the client-side web/static/js/player.js script (shown above) adds the new
player to the same HTML <table> .

Starting a Game

After joining, any player can hit the START QUIZ button. This sends a start

message to one WebSocket server, which broadcasts it to all servers and back
to all clients. Each client calls a start() function in the client-side web/

static/js/player.js script that shows which player started the game and
initializes a five-second countdown timer using the startTimer() function in
web/static/js/timer.js :

// CLIENT-SIDE JAVASCRIPT
// started
export function start(pId) {

if (!player.has(pId)) return;
player.get(pId).info.textContent = 'started game';
startTimer();

}

The Game object on the WebSocket server (ws/lib/game.js) receives the
start message and calls the private #questionNext() method:

// incoming client event
async clientMessage({ type, data }) {

console.log('Data from client', type, data);

// handle client event (on single server)
switch (type) {

case 'start':
// fetch first question

315 Node.js: Novice to Ninja

this.#state.current = type;

// no question found?
if (!await this.#questionNext(timerDefault)) {
await db.broadcast(this.gameId, 'gameover');

};
break;

The #questionNext() method determines whether more questions can be
asked, fetches the next question from the database, and broadcasts it using a
questionactive message type to all WebSocket servers after a five-second

delay:

// fetch and broadcast next question
async #questionNext(delay) {

// can ask next question?
if (this.#state.question >= this.cfg.questions_asked) return;

// fetch next question and answer set
const qSet = await db.questionFetch(this.#state.question + this.cfg.
➥question_offset);
if (!qSet) return;

qSet.num = this.#state.question + 1;

this.#setTimer(async () => {
await db.broadcast(this.gameId, 'questionactive', qSet);

}, delay || 1);

return qSet.num;

}

The questionFetch() function defined in libshared/quizdb.js returns an
object containing the question text and an array of answer objects where one
has a correct property set to true :

// fetch next question and answer set
export async function questionFetch(qNum) {

Example Real-time Multiplayer Quiz: WebSocket Code 316

// fetch question
const
qCount = await questionCount(),
question = await dbSelect('SELECT * FROM question ORDER BY id LIMIT 1
➥OFFSET $1', [qNum % qCount]);

if (question.length !== 1) return null;

// fetch answers
const answer = await dbSelect('SELECT * FROM answer WHERE question_id=$1 ORDER
➥BY id;', [question[0].id]);

if (!answer.length) return null;

return {
text: question[0].text,
answer: answer.map(a => { return { text: a.text, correct: a.correct }})

};

}

Note that the PostgreSQL OFFSET clause fetches the next question according
to the random question_offset defined for the current game.

Answering a Question

When each client receives the questionactive message it runs the show()

function in the client-side web/static/js/question.js script to display the
question and possible answer buttons:

// CLIENT-SIDE JAVASCRIPT
// show question
export function show(q) {

currentQuestion = q;
currentQuestion.answered = null;

clear(question);
clear(answers);

317 Node.js: Novice to Ninja

https://www.postgresql.org/docs/current/queries-limit.html

answers.classList.remove(answeredClass);

qNum.textContent = q.num;
question.innerHTML = q.text;
currentQuestion.answerNode = [];

q.answer.forEach((ans, idx) => {
const button = document.createElement('button');
button.value = idx;
button.innerHTML = `${ idx+1 }: ${ ans }`;
currentQuestion.answerNode[idx] = answers.appendChild(button);

});

}

When the player answers a question—by clicking a button or pressing an
associated number (1 to 4) on the keyboard—the questionAnswered()

function in the client-side web/static/js/question.js script verifies it’s valid,
highlights the button, and raises a custom event named answered :

// CLIENT-SIDE JAVASCRIPT

// answer event handlers
answers.addEventListener('click', questionAnswered);
window.addEventListener('keydown', questionAnswered);

// user answers a question
function questionAnswered(e) {

// already answered?
if (!currentQuestion || currentQuestion.answered !== null) return;

let ans = null;
if (e.type == 'click') {

// button click
ans = e.target && e.target.nodeName === 'BUTTON' ? parseInt(e.target.value,
➥ 10) : null;
if (ans > currentQuestion.answer.length) ans = null;

}

Example Real-time Multiplayer Quiz: WebSocket Code 318

else {

// keypress
ans = e.key >= '1' && e.key <= String(currentQuestion.answer.length) ?
➥parseInt(e.key, 10) - 1 : null;

}

if (ans === null) return;

// highlight answer
currentQuestion.answered = ans;
answers.classList.add(answeredClass);
currentQuestion.answerNode[ans].classList.add(answeredClass);

// raise custom event
document.dispatchEvent(new CustomEvent('answered', { detail: ans }));

}

This triggers a handler function in the client-side web/static/js/main.js

script, which sends a questionanswered message to the connected
WebSocket server:

// CLIENT-SIDE JAVASCRIPT

// question answered event
document.addEventListener('answered', e => {
if (state.current === 'questionactive') sendMessage('questionanswered', {
➥answer: e.detail });

});

This triggers the Game object's clientMessage() function in ws/lib/game.js :

// incoming client event
async clientMessage({ type, data }) {

console.log('Data from client', type, data);

// handle client event (on single server)

319 Node.js: Novice to Ninja

switch (type) {

// ...

case 'questionanswered':
// player answers question
if (this.#state.current !== 'questionactive') return;

// calculate player score
const correct = this.#state.activeQuestion.answer[data.answer].correct;
data = {
playerId: data.playerId,
score: correct ? this.cfg.score_correct : this.cfg.score_incorrect,
fastest: correct && !this.#state.correctGiven

};

// fastest correct bonus?
if (data.fastest) data.score += this.cfg.score_fastest;

// first answer controls flow
if (!this.#state.playersAnswered) {

let timeout = 100;

// first response?
if (!this.#state.playersAnswered && this.player.size > 1) {

// send question timeout warning
timeout =this.cfg.timeout_answered * 1000;
await db.broadcast(this.gameId, 'questiontimeout', { timeout });

}

// complete question
if (timeout) {

this.#setTimer(async () => {

// broadcast correct answer
await db.broadcast(this.gameId, 'questioncomplete', {
correct: this.#state.activeQuestion.answer.findIndex(a => a.
➥correct)

});

Example Real-time Multiplayer Quiz: WebSocket Code 320

// show scoreboard
this.#setTimer(async () => {
await db.broadcast(this.gameId, 'scoreboard');

// next question or game over?
if (!(await this.#questionNext(timerDefault))) {
await db.broadcast(this.gameId, 'gameover');

};

});

}, timeout);

}

}
break;

}

// broadcast message to all servers
if (type) await db.broadcast(this.gameId, type, data);

}

It calculates the player’s score if they’re correct, incorrect, or the fastest to
respond based on the game settings. This is broadcast to all servers, which
update their player scores when they’re received by the #eventHandler()

method (they aren’t broadcast to their clients):

// incoming event sent to all game servers
async #eventHandler({ gameId, type, data }) {

console.log('Shared server event', type, data);

if (gameId !== this.gameId || !type) return;

// handle server event (on all servers)
switch (type) {

321 Node.js: Novice to Ninja

1

// ...

// player answers question
case 'questionanswered':
if (this.#state.current !== 'questionactive') return;

const p = this.player.get(data.playerId);
if (p) {
p.scoreQuestion = data.score;
this.#state.correctGiven = data.fastest;
this.#state.playersAnswered++;

}

// ...

}

// send to all clients
if (type) this.#clientSend(type, data);

// clean up completed game
if (this.#state.current === 'gameover') {

db.pubsub.off(`event:${ this.gameId }`, this.#handlerFunction);
await gameComplete(this.gameId);

}

}

A chain of events then commences on the WebSocket server that received
the first answer response:

It broadcasts a questiontimeout to all servers and clients. When
received, each client starts a timer of game.timeout_answered seconds,

which indicates how long users have to respond (see web/static/js/main.js):

// CLIENT-SIDE JAVASCRIPT
// receive message
ws.addEventListener('message', e => {

Example Real-time Multiplayer Quiz: WebSocket Code 322

2

3

const { type, data } = parseMessage(e.data);
if (!type || !data) return;

console.log('Data from server:', type, data);

switch (type) {

case 'questiontimeout':
startTimer(data.timeout);
break;

An identical timer is started on the server. After it has elapsed, it
broadcasts a questioncomplete message with the correct answer. On

receipt, each client runs the correctAnswer() function in the client-side web/

static/js/question.js script to highlight the appropriate button:

// CLIENT-SIDE JAVASCRIPT
// receive message
ws.addEventListener('message', e => {

const { type, data } = parseMessage(e.data);
if (!type || !data) return;

console.log('Data from server:', type, data);

switch (type) {

case 'questioncomplete':
question.correctAnswer(data.correct);
break;

After another five seconds have elapsed, the server broadcasts a
scoreboard message to each server. When received, each server

appends the calculated player total scores to the message and sends it to its
connected clients in the Game #eventHandler() method (ws/lib/game.js):

323 Node.js: Novice to Ninja

4

// incoming event sent to all game servers
async #eventHandler({ gameId, type, data }) {

console.log('Shared server event', type, data);

if (gameId !== this.gameId || !type) return;

// handle server event (on all servers)
switch (type) {

// show scoreboard
case 'scoreboard':
if (this.#state.current !== 'questioncomplete') return;
this.#state.current = type;
this.player.forEach(p => p.scoreTotal += p.scoreQuestion);
data = this.playerAll();
break;

}

// send to all clients
if (type) this.#clientSend(type, data);

On receipt, each client executes the score() function in web/static/js/

player.js to update the player totals. This regenerates the player table with
the updated scores with the highest scoring player at the top:

// CLIENT-SIDE JAVASCRIPT
// update scores
export function score(pAll) {
init(pAll.sort((a, b) => b.score - a.score), true);
}

The server calls the Game object’s #questionNext() method to fetch
the next question. This is sent as a new questionactive message after

another five seconds, and the process restarts.

The method returns undefined when the number of questions reaches the

Example Real-time Multiplayer Quiz: WebSocket Code 324

game.questions_asked . When this occurs, the server broadcasts a gameover

message to all servers, which is handled by the #eventHandler() method in
(ws/lib/game.js):

// incoming event sent to all game servers
async #eventHandler({ gameId, type, data }) {

console.log('Shared server event', type, data);

if (gameId !== this.gameId || !type) return;

// handle server event (on all servers)
switch (type) {

// game over
case 'gameover':
this.#state.current = type;
data = {};
break;

}

// send to all clients
if (type) this.#clientSend(type, data);

// clean up completed game
if (this.#state.current === 'gameover') {

db.pubsub.off(`event:${ this.gameId }`, this.#handlerFunction);
await gameComplete(this.gameId);

}

}

Each server runs a gameComplete() function to delete the Game object and
the associated record in the database game table (only the first will succeed).
This causes a cascade of deletions from the player and pubsub tables for
that game:

325 Node.js: Novice to Ninja

// remove active game
async function gameComplete(gameId) {

if (!gameActive.has(gameId)) return;

await db.gameRemove(gameId);
gameActive.delete(gameId);

console.log(`Game ${ gameId } removed - active games on this server:
➥${ gameActive.size }`);

}

The same gameover message is sent to all connected clients. When received,
each client shows the Game over messages with links to start or join a new
game.

Leaving a Game

If the user closes or refreshes their browser, a WebSocket close event
handler is triggered on the server in ws/index.js :

// client connection closed
socket.on('close', async () => {

// remove player
if (player) {
await player.game.playerRemove(player);

}

console.log(`disconnection from ${ req.socket.remoteAddress }`);

});

It calls the Game object's playerRemove() method in ws/lib/game.js :

// remove player from game
async playerRemove(player) {

Example Real-time Multiplayer Quiz: WebSocket Code 326

// delete from database
await db.playerRemove(player.id);

// broadcast event
await db.broadcast(
this.gameId,
'playerRemove',
{ id: player.id }

);

}

This deletes the player from the database player table using the
playerRemove() function in libshared/quizdb.js :

// remove a player
export async function playerRemove(playerId) {

return await dbDelete({
table: 'player',
values: { id: playerId }

});

}

It then broadcasts a playerRemove message to all WebSocket servers. This is
received by their Game #eventHandler() , which deletes the player reference:

// incoming event sent to all game servers
async #eventHandler({ gameId, type, data }) {

console.log('Shared server event', type, data);

if (gameId !== this.gameId || !type) return;

// handle server event (on all servers)
switch (type) {

// remove player

327 Node.js: Novice to Ninja

case 'playerRemove':
if (this.player.has(data.id)) {
this.player.delete(data.id);

}
break;

Finally, the same playerRemove message is sent to all clients. On receipt, each
client executes the remove() function in web/static/js/player.js to delete
the player from memory and the DOM:

// remove existing player
export function remove(p) {

if (!p.id || !player.has(p.id)) return;

pList.removeChild(player.get(p.id).node);
player.delete(p.id);

}

Exercises

Try debugging the quiz application using the instructions provided in Chapter
4. It’s not as straightforward as before, because a single user could be
communicating with any of the HTTP or WebSocket servers.

Fortunately, each player can only connect to one WebSocket server at a time.
Examine the Docker log when you start or join a game:

ws_1 | connection from ::ffff:172.18.0.3

In this case, the user is connecting to the first WebSocket server ws_1 . Run
the following command in another terminal to list the active Docker
containers:

docker container ls

Example Real-time Multiplayer Quiz: WebSocket Code 328

Note the NAMES and PORTS mappings:

PORTS NAMES
0.0.0.0:59961->8001/tcp, 0.0.0.0:59962->9229/tcp nodequiz_ws_1
0.0.0.0:59956->8001/tcp, 0.0.0.0:59957->9229/tcp nodequiz_ws_2
0.0.0.0:59958->8001/tcp, 0.0.0.0:59959->9229/tcp nodequiz_ws_3
0.0.0.0:59952->8000/tcp, 0.0.0.0:59953->9229/tcp nodequiz_web_1
0.0.0.0:59954->8000/tcp, 0.0.0.0:59955->9229/tcp nodequiz_web_2
0.0.0.0:5432->5432/tcp dbserver
0.0.0.0:59951->8080/tcp nodequiz_adminer_1
0.0.0.0:80->80/tcp, 0.0.0.0:8080->8080/tcp nodequiz_reverse-proxy_1

In this example, the following ports are exposed on nodequiz_ws_1 :

localhost:59961 maps to the ws_1 WebSocket service running on port
8001

localhost:59962 maps to the ws_1 WebSocket server’s debugger
running on port 9229

Open chrome://inspect/#devices in Google Chrome, hit Configure, and add
localhost:59962 as a target.

329 Node.js: Novice to Ninja

chrome://inspect/#devices

16-2. Adding a debugging port

An inspect link to the Remote Target should appear within a few seconds.
Click it to open the WebSocket server’s debugger.

Next, consider how you could improve the quiz app. For example:

limit imported questions to specific categories, difficulties, or types
create administrative screens to add, edit, or remove questions
allow the user to refresh the page but remain active
display which players have already answered
show which choice each player made on the answer screen
provide “restart game” functionality, which enrolls all current players on a
new quiz
make a game fully recoverable if one or more WebSocket servers fail

Example Real-time Multiplayer Quiz: WebSocket Code 330

https://opentdb.com/api_config.php

Summary

This quiz illustrates how a scalable, multi-server, multi-user, real-time web
application can be developed in Node.js using a few third-party modules,
vanilla ES6, and less than 60KB of code. Admittedly, negotiating messages
between all servers and clients is complex, but that’s the nature of multi-
player games rather than WebSocket technologies.

In the final chapters, we’ll look at a selection of popular Node.js development
and deployment tools that you may find useful.

331 Node.js: Novice to Ninja

Node.js Tools
and

Resources

Chapter

17

Node.js Tools and Resources 332

I hope you now feel confident enough to write your own Node.js programs and
find appropriate packages when necessary. The success of the runtime has
one downside: you’re spoiled for choice! There are 1.5 million packages
available, ranging from full application development suites to simple, one-
function modules. This can lead to choice paralysis, and the moment you
settle on one package, a better option will inevitably arrive.

17-1. npm

This chapter provides a list of popular and proven npm packages for use in
various situations. They provide a head start, but please don’t think you have
to use them. Only you can judge whether a package is or isn’t useful for your
project.

I’ll also reiterate a point made throughout this book: only use third-party
modules that are absolutely necessary. It makes sense to leverage the years
of development and real-world testing received by frameworks, database
drivers, image optimizers, and so on. You can write smaller modules
yourself—such as string or date manipulation functions. It may take longer
initially, but should save you time over the long term, because there’s no need
to search for appropriate packages, manage updates, assess security issues,
or switch to alternatives.

Perfect Package Pursuit

The following sites provide curated lists of npm packages:

333 Node.js: Novice to Ninja

github.com/sindresorhus/awesome-nodejs
nodejs.libhunt.com

You can search for npm packages from the command line. For example:

$ npm search mysql

NAME | DESCRIPTION | AUTHOR | DATE | VERSION
mysql | A node.js dri… | =felixge… | 2020-01-23 | 2.18.1
knex | A… | =tgriesser… | 2022-03-13 | 1.0.4
sequelize | Sequelize i… | =janaameier… | 2022-02-25 | 6.17.0
mysql2 | fast mysql driv… | =sidorares… | 2021-11-14 | 2.3.3
sails-mysql | MySQL adapter … | =particlebanan… | 2021-10-15 | 2.0.0
waterline | An ORM for Node… | =particlebanan… | 2021-10-22 | 0.15.0
egg-mysql | MySQL plugin fo… | =jtyjty99999… | 2022-02-11 | 3.1.0
tunnel-ssh | Easy extendable … | =agebrock | 2021-10-03 | 4.1.6
@mysql/xdevapi | MySQL… | =ltangvald… | 2022-01-18 | 8.0.28
hapi-plugin-mysql | Hapi plugin … | =adrivanhoudt | 2022-01-03 | 7.2.6
mysql-abstraction | Abstraction la… | =rwky | 2022-02-22 | 5.1.4
mysqlconnector | MySQL connector | =pteyssedre | 2021-10-26 | 1.0.21
anytv-node-mysql | Our version… | =freedom_sherw… | 2022-01-19 | 1.0.0
sql-template-strings | ES6 tagged templ… | =felixfbecker | 2016-09-17 | 2.2.2
@keyv/mysql | MySQL/Mari… | =jaredwray… | 2022-01-25 | 1.3.0
aws-xray-sdk-mysql | AWS X-Ray Patc… | =aws-sdk-team… | 2021-11-11 | 3.3.4
winston-mysql | MySQL transp… | =charles-zh | 2021-09-22 | 1.1.1
data-elevator-mysql | Flexible util… | =kaasdude… | 2021-09-29 | 4.0.0

An online search engine offers a better interface:

npmjs.com: the official repository
npms: a fast search, which ranks packages by a quality
snyk.io/advisor/: ranks packages with a health percentage based on their
popularity, maintenance, security issues, and contributor community

There are tools for comparing two or more packages:

npmcompare.com
moiva.io

Or tools to extract package information:

Node.js Tools and Resources 334

https://github.com/sindresorhus/awesome-nodejs
https://nodejs.libhunt.com/
https://www.npmjs.com/
https://npms.io/
https://snyk.io/advisor/
https://npmcompare.com/
https://moiva.io/

anvaka.com: dependency visualization
npm-stat.com: download and usage statistics

If you’re struggling to choose, opt for a package that:

is popular
has a non-restrictive usage license
receives recent and regular updates
has a small size
has the fewest dependencies
has no major outstanding issues

Most of the packages discussed below satisfy these criteria.

Development Tools

The following packages are tools that aid development rather than form part
of your Node.js project. You’ll normally install them globally with npm install

<package> -g or add them as a devDependency in the project folder with npm

install <package> --save-dev :

nvm (Node Version Manager): manages multiple installations of Node.js
ESLint: finds and fixes JavaScript code problems
TypeScript: adds variable types and other features to the language and
compiles to standard JavaScript
Rollup: a JavaScript module bundler (tutorial here)
esbuild: a fast module bundler written in Go
PostCSS: CSS transformer and optimizer (tutorial here)
JSDoc: generates API documentation from JavaScript comments
small-static-server : a tiny static file web server

nodemon: restarts Node.js applications when source files change
Browsersync: browser live reloads when client-side HTML, CSS, or
JavaScript updates

335 Node.js: Novice to Ninja

http://npm.anvaka.com/
https://npm-stat.com/
https://github.com/nvm-sh/nvm
https://eslint.org/
https://www.typescriptlang.org/
https://rollupjs.org/
https://www.sitepoint.com/rollup-javascript-bundler-introduction/
https://esbuild.github.io/
https://golang.org/
https://postcss.org/
https://www.sitepoint.com/an-introduction-to-postcss/
https://www.npmjs.com/package/jsdoc
https://www.npmjs.com/package/small-static-server
https://nodemon.io/
https://browsersync.io/

17-2. Nodemon

nodemon has been used throughout this book. Use it in place of node when
running a script during development to restart the application if a script or any
of its modules is changed:

nodemon index.js

Browsersync is effectively a client-side version of nodemon with a few
superpowers. The following command starts a web server that can serve
HTML files and other assets. Client-side scripts are dynamically reloaded if
any .js file changes:

browser-sync start --server --files "js/*.js"

Finally, you’ll need a good Node.js-compatible editor such as VS Code, Atom,
or Sublime Text. Most offer extensions for linting, debugging, and source-code
management.

Testing

Writing tests for your application’s internal functions helps ensure updates are
robust and won’t break existing functionality. Node.js doesn’t provide a built-in
test runner, but the following packages are popular:

Testing Library
Jest

Node.js Tools and Resources 336

https://code.visualstudio.com/
https://atom.io/
https://www.sublimetext.com/
https://testing-library.com/
https://jestjs.io/

Mocha
AVA
uvu
Tap

The main difference between these packages is the download size and
syntax. Most allow you to write English-like assertions, so choose whichever
appeals to you or your team.

All suites provide unit testing facilities to verify the result of a function given
known inputs. This example uses uvu to test the Math.sqrt() method:

import { test } from 'uvu';
import * as assert from 'uvu/assert';

test('Math.sqrt()', () => {
assert.is(Math.sqrt(4), 2);
assert.is(Math.sqrt(144), 12);
assert.is(Math.sqrt(2), Math.SQRT2);

});

test.run();

The following packages provide headless browser automation tools used for
integration testing—that is, testing routes through an application by
programmatically clicking buttons and filling in forms to observe an expected
result:

Puppeteer: Chrome automation
Playwright: supports all mainstream browsers
Cypress: commercial option with remote testing

Logging

If you outgrow console.log() , third-party logging modules provide more
sophisticated logging with messaging levels, verbosity, sorting, file output,
profiling, reporting, and more. Popular options include:

337 Node.js: Novice to Ninja

https://mochajs.org/
https://github.com/avajs/ava
https://github.com/lukeed/uvu
https://node-tap.org/
https://github.com/lukeed/uvu
https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Math/sqrt
https://pptr.dev/
https://playwright.dev/
https://www.cypress.io/

cabin : Node.js, middleware, and browser logging
loglevel : a lightweight Node.js equivalent to the browser console API
signale : a highly configurable logger
pino : a fast and popular Node.js and middleware logger
winston : a comprehensive and configurable logger
morgan : Express middleware logging
storyboard : a logging library that can output to a Chrome DevTools

extension
tracer : simple log formatting

Full-stack Frameworks

The following frameworks can be used to create full web applications and
typically allow rendering on the server, the client, or a mixture, as appropriate.
They may offer hydration techniques where initial content is generated on the
server in HTML before client-side components take over for full interactivity.

17-3. Next.js

Next.js: based on React components
Nuxt.js: based on Vue components

Node.js Tools and Resources 338

https://www.npmjs.com/package/cabin
https://www.npmjs.com/package/loglevel
https://www.npmjs.com/package/signale
https://www.npmjs.com/package/pino
https://www.npmjs.com/package/winston
https://www.npmjs.com/package/morgan
https://www.npmjs.com/package/storyboard
https://www.npmjs.com/package/tracer
https://nextjs.org/
https://reactjs.org/
https://nuxtjs.org/
https://vuejs.org/

SvelteKit: based on Svelte components
Sails: the Node.js equivalent to Ruby on Rails

Server-side Frameworks

If you’d rather have full control over client and server development, the
following frameworks primarily handle server-side rendering of HTML content
and/or Ajax responses in JSON or any other format:

Express: one of the first and most popular frameworks
Koa: a modern framework designed by the Express team
Fastify: claims to be one of the fastest options
Hapi: focuses on simplicity, security, and scalability
NestJS: offers concepts similar to the Angular client-side framework
Adonis: the Node.js equivalent to PHP Laravel
Feathers: a lightweight framework for real-time applications and REST
APIs
restify: optimized for REST web services

Web Publishing, Content Management Systems,

and Blogging

The following platforms provide administration panels where content editors
can write content that’s pulled into a site template theme when visitors access
the site. These are effectively Node.js alternatives to the PHP-based
WordPress.

Node.js in Client-side Frameworks

Client-side JavaScript (and CSS) frameworks that run in the browser

don’t generally require Node.js. However, they often use the runtime

to provide build tools to scaffold project folders, bundle modules,

implement testing, run development servers, or optimize assets at

build time.

339 Node.js: Novice to Ninja

https://kit.svelte.dev/
https://svelte.dev/
https://sailsjs.com/
https://rubyonrails.org/
https://expressjs.com/
https://koajs.com/
https://www.fastify.io/
https://hapi.dev/
https://nestjs.com/
https://angular.io/
https://adonisjs.com/
https://laravel.com/
https://feathersjs.com/
http://restify.com/

17-4. Ghost CMS

Ghost: a commercial, hosted service is also available at ghost.org
Hexo: closer to an SSG (see the “Static Site Generators” section below), but
administration panels can be added via a plugin

Headless Content Management Systems

The following packages provide editing panels and make content available via
an API. Articles and other data can be pulled into your application or a static
site generator for output to a web page, app, ebook, PDF, or elsewhere:

Strapi
Keystone
Apostrophe

Static Site Generators

Static site generators (SSGs) pull content—typically from Markdown files or a
headless CMS—and place it into templates at build time. The result is a full site

Node.js Tools and Resources 340

https://github.com/TryGhost/Ghost
https://ghost.org/
https://hexo.io/
https://github.com/jaredly/hexo-admin
https://strapi.io/
https://keystonejs.com/
https://apostrophecms.com/

pre-rendered as HTML files that can be hosted on any web server without
language runtimes, databases, security, or performance implications. You may
see this referred to as Jamstack, which originally meant JavaScript, APIs, and
Markup, but is now used in a wider context:

Eleventy: Markdown to HTML, with support for many template engines
MetalSmith: a simple pluggable SSG
Gatsby: based on React components
VuePress: based on Vue components
Gridsome: based on Vue components

Database Drivers

Database drivers—also known as connectors or clients—provide APIs that
allow you to connect, query, and update database data. The following
packages are native drivers: they support a single system, replicate standard
commands, and often have official support from the database developers:

mysql : for MySQL
mysql2 : a faster MySQL alternative
mariadb : for MariaDB
pg : for PostgreSQL
mongodb : for MongoDB
mssql : for Microsoft SQL Server
oracledb : for Oracle
couchbase : for Couchbase
redis : for Redis
sqlite : for SQLite
sqlite3 : an asynchronous SQLite alternative
sqlite-async : a promise-based version of sqlite3

An object-relational mapping (ORM) module can make development easier by
providing an abstract layer between your code and the database. Rather than
running commands directly, your code manipulates data objects that are
saved and restored from a representation in a database. This allows you to

341 Node.js: Novice to Ninja

https://www.sitepoint.com/learn-jamstack/
https://www.11ty.dev/
https://www.metalsmith.io/
https://www.gatsbyjs.com/
https://reactjs.org/
https://vuepress.vuejs.org/
https://vuejs.org/
https://gridsome.org/
https://vuejs.org/
https://www.npmjs.com/package/mysql
https://www.npmjs.com/package/mysql2
https://www.npmjs.com/package/mariadb
https://www.npmjs.com/package/pg
https://www.npmjs.com/package/mongodb
https://www.npmjs.com/package/mssql
https://www.npmjs.com/package/oracledb
https://www.npmjs.com/package/couchbase
https://www.npmjs.com/package/redis
https://www.npmjs.com/package/sqlite
https://www.npmjs.com/package/sqlite3
https://www.npmjs.com/package/sqlite-async

switch between systems, but you’ll also need to install a native driver, and the
full database feature set may not be available. Examples include:

mongoose : for MongoDB
sequelize : for MySQL, MariaDB, PostgreSQL, SQLite, DB2, and Microsoft

SQL Server
typeorm : for MySQL, MariaDB, PostgreSQL, SQLite, Oracle, and Microsoft

SQL Server

Refer to Chapter 10 for database usage examples.

Templating

Most templating systems generate HTML by inserting values into appropriate
blocks. Some provide programming constructs such as file includes, loops,
and conditions to optimize development. Popular options include:

EJS
Nunjucks
Handlebars
Pug

Pug differs from others in that you use a concise, indented-style document
rather than HTML tags. For example, assume a title value is set to “My Site”
in the following Pug template:

doctype html
html
head
title #{title}

body
h1 #{title}
p#intro Welcome to my site.

The resulting HTML is this:

Node.js Tools and Resources 342

https://www.npmjs.com/package/mongoose
https://www.npmjs.com/package/sequelize
https://www.npmjs.com/package/typeorm
https://ejs.co/
https://mozilla.github.io/nunjucks/
https://handlebarsjs.com/
https://pugjs.org/

<!DOCTYPE html>
<html>
<head>
<title>My Site</title>

</head>
<body>
<h1>My Site</h1>
<p id="intro">Welcome to my site</p>

</body>
</html>

You’ll typically use a template system in server-side frameworks such as
Express. Chapter 5, Chapter 6 and Chapter 15 of this book use EJS. For
example, render an <h1> title between a header and footer defined in partials:

<%- include('partials/_htmlhead'); -%>

<h1><%= title %></h1>

<%- include('partials/_htmlfoot'); -%>

Command Line

The following packages can be useful when creating command-line
applications using Node.js:

commander : parse command-line arguments
cliffy : implement interactive CLIs
chalk : output color console messages
terminal-link : output clickable hyperlinks
boxen : output boxes
progress : a simple progress bar

progress [=====] 29%

343 Node.js: Novice to Ninja

https://www.npmjs.com/package/commander
https://www.npmjs.com/package/cliffy
https://www.npmjs.com/package/chalk
https://www.npmjs.com/package/terminal-link
https://www.npmjs.com/package/boxen
https://www.npmjs.com/package/progress

File System

The standard Node.js library provides an extensive file system API for
creating, altering, reading, and deleting files and directories. These are fairly
low-level functions, so the following packages provide easier file manipulation
options:

fs-extra : provides a range of file system methods
globby : file name string (glob) matching
chokidar : cross-platform file watching
del and rimraf : file and directory deletion

Network

The following packages provide a number of network APIs.

Note that a native version of the HTTP Fetch API arrived in Node.js 18. It
should become less necessary to use a third-party module as developers and
hosts update their installations.

node-fetch : HTTP Fetch
axios : HTTP Fetch
got : HTTP Fetch
get-port : get an available TCP port
ssh2 : SSH client and server methods

WebSockets

WebSockets establish a two-way interactive communication channel
between a browser and server, which permits real-time updates and
applications. The following packages provide server-side APIs that can send
messages to and from the browser WebSocket API:

ws : fast lightweight server
socket.io : full client and server library

Node.js Tools and Resources 344

https://nodejs.org/dist/latest/docs/api/fs.html
https://www.npmjs.com/package/fs-extra
https://www.npmjs.com/package/globby
https://www.npmjs.com/package/chokidar
https://www.npmjs.com/package/del
https://www.npmjs.com/package/rimraf
https://developer.mozilla.org/docs/Web/API/Fetch_API
https://www.npmjs.com/package/node-fetch
https://www.npmjs.com/package/axios
https://www.npmjs.com/package/got
https://www.npmjs.com/package/get-port
https://www.npmjs.com/package/ssh2
https://developer.mozilla.org/en-US/docs/Web/API/WebSocket
https://www.npmjs.com/package/ws
https://www.npmjs.com/package/socket.io

See Chapter 11 and Chapter 16 for WebSocket examples using the ws library.

Images

Node.js applications can create, examine, and modify images in most popular
formats (JPG, GIF, PNG, etc.) Packages typically provide options to resize, crop,
flip, and rotate, or apply filters such as sharpening, blurring, greyscale, and
opacity. Popular options include:

jimp : scaling, flipping, filters, and pixel analysis
image-js : Node.js and browser image manipulation
sharp : fast image conversion
imagemin : image minification

The following example uses jimp to load an image, convert it to greyscale,
reduce the width and height by 50%, and output the modified version:

import Jimp from 'jimp';

Jimp.read('one.png').then(image => {
image
.greyscale()
.scale(0.5)
.write('one-bw-small.png');

});

Email

17-5. Nodemailer

345 Node.js: Novice to Ninja

https://www.npmjs.com/package/ws
https://www.npmjs.com/package/jimp
https://www.npmjs.com/package/image-js
https://www.npmjs.com/package/sharp
https://www.npmjs.com/package/imagemin
https://www.npmjs.com/package/jimp

The most popular Node.js package for sending email is Nodemailer. The
following code sends a single email via an SMTP account:

const nodemailer = require('nodemailer');

const transport = nodemailer.createTransport({
host: 'smtp.example.com',
port: 587,
secure: false,
auth: {
user: 'username',
pass: 'password',

},
});

await transport.sendMail({
from: '"Sender" <me@sender.com>',
to: 'you@recipient.com',
subject: 'new email',
text: 'Hello world!', // plain text body
html: '<p>Hello world!</p>', // HTML body

});

An alternative is node-email , which provides a wrapper around the open-
source Sendmail application. Either option is fine for sending ad-hoc emails
such as user registration or password reset confirmations.

Bulk email messaging—such as newsletters—is better handled using a
dedicated service such as Mailgun, SendGrid, MailerSend, or Mailchimp. These
often offer their own Node.js APIs to efficiently manage email transmission.

Finally, imap-simple provides a way to connect to and read from an IMAP
inbox if you need to provide automated email responses.

Security and Authentication

Passport is one of the most popular Express-compatible authentication
packages for Node.js. It supports more than 500 strategies (plugins) ranging
from basic usernames and passwords to passwordless and single-sign-on

Node.js Tools and Resources 346

https://nodemailer.com/
https://www.npmjs.com/package/email
https://en.wikipedia.org/wiki/Sendmail
https://www.mailgun.com/
https://sendgrid.com/
https://www.mailersend.com/
https://mailchimp.com/
https://www.npmjs.com/package/imap-simple
https://www.passportjs.org/
https://www.passportjs.org/packages/
https://www.passportjs.org/concepts/authentication/password/
https://www.passportjs.org/packages/passport-passwordless/

OAuth options for Google, GitHub, Facebook, Twitter, and LinkedIn.

An alternative option is grant , which supports more than 200 OAuth
providers.

Summary

The Node.js ecosystem is enormous and growing exponentially. Third-party
packages are generally designed to handle a single, specific task, so you’ll find
a range of appropriate options for every situation. The downsides:

It’s easy to become overwhelmed and suffer choice paralysis as you
expend time and energy evaluating packages.

You can become increasingly dependent on third-party solutions. Your
development career may descend into writing tedious code to glue
packages together.

The more third-party packages you use, the more time you require to
maintain and update that software. You’ll often need to update your code
as APIs evolve.

There’s no such thing as a perfect Node.js package, and I make no apology for
repeating my mantra: only use third-party modules that are absolutely
necessary. Spend most of your time writing code, not choosing tools and
resources!

I hope you now have a few simple web projects ready to reveal to the world.
The next chapter delves into deployment.

347 Node.js: Novice to Ninja

https://www.npmjs.com/package/grant

Node.js
Application

Deployment

Chapter

18

Node.js Application Deployment 348

You’ll eventually want to release your Node.js web app to the world.
Deployment options have grown exponentially since the runtime was released
in 2009. This chapter describes general types of production hosting, with links
to appropriate companies, but the range of services and prices changes daily.

Pages vs Applications

Many readers of this book will be familiar with PHP—the world’s most-used
web programming language. WordPress alone runs almost half of all websites.
A PHP application consists of .php files that are interpreted by the PHP
runtime when they’re accessed via a server such as Apache. HTML or data is
then returned to the user’s browser.

Browser

Server

Apache... PHP... PHP file(s)

HTML

HTML

Request Request

18-1. PHP rendering

The following points are important to note:

Each page load is stateless. It knows nothing about the application’s state,
so if a user is logged in, their state must be retrieved from a token or
database record during every page request.

Changing a .php file instantly updates the application, because the code
is executed when a user requests that resource.

A .php file that causes an error is less likely to cause problems on other
pages. Of course, that .php file may provide functions shared across
multiple pages, but the server and other parts of the application will usually
remain active.

349 Node.js: Novice to Ninja

https://w3techs.com/technologies/details/cm-wordpress

A Node.js web project is a full application that handles web requests. It doesn’t
(necessarily) require a server such as Apache and runs continuously after the
code is loaded from .js files.

Browser

Server

Node.js... JS file(s)

HTML

Request

18-2. Node.js rendering

Therefore:

State can be retained. If necessary, a server application could store a
JavaScript object for every logged-in user. (I recommend you write
stateless apps, but it’s not enforced!)

Changing a .js file has no impact on the running application. It will only be
loaded after the node process has been stopped and restarted.

If any part of your application causes a crash, it goes down for everyone
forever! No user will be able to access any part of the system and it will lose
any state retained in memory.

The Node.js model has advantages and disadvantages over PHP, but
deploying an application to a production server is more challenging.

Most budget shared server hosts support PHP because it can be run by
uploading a .php file to a server directory. Far fewer offer Node.js, because
you require OS-level access to launch an application, which could hog
resources as it runs continuously.

Node.js Application Deployment 350

Some offer Node.js facilities via systems such as cPanel, where you can define
an application’s start-up command and configuration. However, these often
impose restrictions such as CPU limits or no access to npm.

18-3. cPanel Node.js hosting

Node.js Application Preparation

Your development and deployment environments will differ. As a bare
minimum, live servers should set the NODE_ENV environment variable to
production :

NODE_ENV=production

351 Node.js: Novice to Ninja

1

2

3

4

When set, the Express framework disables verbose logging and enables
template caching to improve performance. Other modules may offer similar
optimizations, but check their README files and documentation.

Internally, your application can detect the NODE_ENV value and disable
terminal debugging messages, or make other changes such as logging to a
file. For example:

// running in development mode?
const DEVMODE = (process.env.NODE_ENV !== 'production');

if (DEVMODE) {
console.log('application started in development mode');

}
else {
writeToLog('application started in production mode');

}

Other environment variables may be required to define application
configurations or database connections.

Finally, production servers should normally launch the application with the
node runtime command rather than nodemon or similar. Command-line

options such as --inspect and --enable-source-maps shouldn’t be used.

Dedicated Server Hosting

In Node’s early days, there was little choice but to spin up a real or virtual Linux
server. It probably remains the most-used method of application deployment
and requires DevOps personnel to:

provision appropriate CPUs, RAM, and disk space

install an appropriate version of the Node.js runtime

pull the application from a repository

npm install all project and global dependencies

Node.js Application Deployment 352

5 launch the application with node app.js as appropriate

Steps 3 to 5 are repeated for every update, although continuous integration
and/or continuous deployment solutions can automate the process.

Many hosts offer virtual servers, including DigitalOcean Droplets, Amazon
EC2, Google Compute Engine, and Azure Virtual Machines.

HTTP and HTTPS Considerations

Chapter 5 showed how to configure SSL certificates in Express. This isn’t
recommended on production servers, because the application must be
launched using sudo to permit use of HTTP ports below 1,000 (port 80 for
HTTP or port 443 for HTTPS).

A better option is to launch the application on a non-standard port—such as
3000 —then use a reverse proxy (see the “Use a Reverse Proxy” section

below) to forward incoming traffic.

The examples in this book launch development servers on an insecure HTTP
connection. This is fine for testing, although care must be taken when
referring to internal URLs throughout the frontend and backend code.

Some developers create a fake self-signed certificate for their development
server, which makes it more difficult to introduce inconsistent HTTP/HTTPS
URLs. The browser will throw an “invalid certificate” error, but you can choose
to ignore it. I don’t recommend this practice: it has burned me in the past!
Browsers often behave differently when they encounter fake certificates. For

sudo-not

Avoid using sudo to run your Node.js application with administrator

privileges. The application or any of its modules would have rights

to do anything—such as wiping OS ?les.

353 Node.js: Novice to Ninja

https://www.digitalocean.com/products/droplets
https://aws.amazon.com/ec2/
https://aws.amazon.com/ec2/
https://cloud.google.com/compute
https://azure.microsoft.com/en-gb/services/virtual-machines/

example, they disable caching, which can lead to strange bugs on live servers.

I recommend you do either of the following:

Use HTTP during development but be wary when referring to internal URLs
that could be HTTPS on production servers.

Generate a real, locally trusted SSL certificate using mkcert . These can be
used on your own development PC, although you can’t share them with
other team members (so they’ll need to generate their own certificates).

Process Management

Node.js applications run on a single processing thread. In other words, 63
cores in your 64-core server CPU are sitting idle.

You can implement your own clustering code to run an application on all
available CPU cores, but this can be difficult (see Chapter 12, as well as the
Node.js documentation). A better solution is to use a process manager, which
makes your live application more efficient by:

running multiple instances across different CPU cores
restarting an instance if (when) it crashes

For this to work, your application must be stateless. Avoid storing application
or user state in variables or local files that could differ across instances.

18-4. PM2

PM2 is the primary contender for Node.js process management. After

Node.js Application Deployment 354

https://github.com/FiloSottile/mkcert
https://nodejs.org/dist/latest/docs/api/cluster.html
https://pm2.keymetrics.io/

installing globally, you can start a Node.js application in cluster mode across all
available CPU cores:

pm2 start app.js -i max

Running processes can be monitored with pm2 status .

Use a Reverse Proxy

A reverse proxy passes an incoming request to your Node.js web application.
Most web servers can be configured as reverse proxies—including NGINX.

18-5. NGINX

This has several advantages:

Any number of domains and applications can be configured on the same
server.
Your Node.js application can be clustered and launched without using
sudo .

PM2 Port Clashes

PM2 magically manages ports. If sixteen instances of your Express

application all listen on port 3000, PM2 ensures they won’t clash. A

single request sent to port 3000 gets forwarded to one application

instance. The next request may go to another.

Note that PM2 port management can fail if you launch your

application using an npm script.

355 Node.js: Novice to Ninja

https://www.nginx.com/

SSL certificates for HTTPS can be managed by the web server.
The web server can be configured to serve static assets—such as client-
side images, CSS, and JavaScript. This is more efficient than passing the
request to Express, because most web servers are multi-threaded.

An NGINX configuration file at /etc/nginx/sites-available/default can
define the incoming ports, set the SSL certificates, look for static files, and
resolve requests to the Node.js application when a static file isn’t found:

server {

listen 80;
listen 443 ssl;

live domain
server_name myapp.com;

HTTPS certificates
ssl_certificate /etc/nginx/ssl/server.crt;
ssl_certificate_key /etc/nginx/ssl/server.key;

static file?
location / {
root /home/node/myapp/static/;
index index.html;
try_files $uri $uri/ @nodejs;

}

Node.js reverse proxy
location @nodejs {
proxy_pass http://localhost:3000;
proxy_http_version 1.1;
proxy_set_header Upgrade $http_upgrade;
proxy_set_header Connection 'upgrade';
proxy_set_header Host $host;
proxy_cache_bypass $http_upgrade;

}
}

The NGINXConfig configuration tool can help create a setup suitable for your
requirements.

Node.js Application Deployment 356

https://www.digitalocean.com/community/tools/nginx

Static Site Hosting (Jamstack)

If your application primarily uses client-side HTML, CSS, and JavaScript, it may
not be necessary to deploy a Node.js application or use any server-side
runtime. A static site generator (SSG) builds directory-based HTML files using
content (typically in Markdown format) and templates. There are numerous
SSGs, but Eleventy is one of the more popular Node.js options.

The resulting build files can be uploaded to any web server. The pages offer:

excellent performance: they’re just files with no server-side processing
robust security: there’s no database or runtime to exploit
portability: you can host anywhere with no vendor lock-in
minimum-cost deployments: often for free

This simpler approach to web development has become increasingly popular
over the past few years. Facilities such as Amazon S3 hosting have been
overtaken by platform-as-a-service (PaaS) hosts such as GitHub Pages,
CloudFlare Pages, Heroku, Vercel, and Netlify.

Some services offer a simple command-line deployment tool, while others
require you to push a branch to a Git repository.

Serverless/Lambda Functions

If your app requires more comprehensive server-side processing such as
database storage, you could consider serverless functions. Despite the name,

Build PHP-powered Static Sites with Node.js

I often use Node.js SSGs for smaller websites. These sometimes

require basic server-side functionality such as forwarding old URLs

or parsing contact forms. Rather than deploy a Node.js server, I

output a few .php ?les so the site can be deployed to any PHP

host.

357 Node.js: Novice to Ninja

https://jamstack.org/generators/
https://jamstack.org/generators/
https://www.11ty.dev/
https://docs.aws.amazon.com/AmazonS3/latest/userguide/WebsiteHosting.html
https://pages.github.com/
https://pages.cloudflare.com/
https://www.heroku.com/
https://vercel.com/
https://www.netlify.com/
https://www.sitepoint.com/cloudflare-pages-jamstack-deployment/

serverless functions run on a server but there’s no need for you to manage
the OS, runtime, or even use a framework such as Express.

Serverless functions usually respond on a network endpoint. For example,
data posted to https://myapp.com/store-contact/ passes the HTTP request to
a function defined in store-contact.js , which stores the information and
returns a result. The following Netlify serverless function at functions/

hello.js returns a message when requesting the /hello/ endpoint:

exports.handler = async (event, context) => {
return {
statusCode: 200,
body: 'Hello World'

};
};

You could therefore choose to write a monolithic web application as a series of
small stateless functions. These are started on demand, but they usually
remain active on busy servers and can scale according to rises in traffic. If a
serverless function fails, it’s restarted on the next request and won’t usually
affect or conflict with other functions.

Most cloud hosts offer Node.js serverless functions including AWS, Azure,
Google, Cloudflare, Heroku, Vercel, and Netlify.

Serverless functions can be ideal for many applications. They can simplify
DevOps and reduce costs on smaller services, but there are downsides:

Usage limitations: not all npm packages can be used, especially if they
depend on other OS utilities.

AWS Everywhere

Many serverless hosts, including Netlify and Vercel, deploy

serverless functions to AWS Lambda but offer a simpler or

improved developer experience.

Node.js Application Deployment 358

https://myapp.com/store-contact/
https://aws.amazon.com/lambda/
https://azure.microsoft.com/en-gb/services/functions/
https://cloud.google.com/functions
https://www.cloudflare.com/en-gb/learning/serverless/glossary/serverless-and-cloudflare-workers/
https://www.heroku.com/
https://vercel.com/
https://www.netlify.com/

Start-up delay: the first request can take some time as the function is
initialized.
Shut-down timeout: functions may have processing limits, so long-running
activities such as WebSocket servers may not be possible.
Vendor lock-in: you must adhere to the host’s APIs, rules, and updates. It
may be difficult to switch to another service.
Incalculable costs: serverless functions are often priced according to
compute time. You may have heard anecdotes from developers who
deployed a non-terminating recursive function that led to an eye-watering
bill.

Container Hosting

You may require more robust hosting as your Node.js service increases in
popularity. The multiplayer quiz in Chapter 12 uses Docker containers to
launch multiple load-balanced instances of the HTTP and WebSocket
applications. The same concept can be applied on production servers.
Solutions such as Kubernetes and Docker Swarm can launch, manage, update,
and restart containers across any number of servers in any number of
locations throughout the world.

At this point, you’ll require a dedicated DevOps team to manage deployments
costing millions every year. That’s unlikely to be a problem: if your app is
successful, venture capitalists can’t give you enough money, and Google/
Microsoft/Apple/Facebook are circling for a potential takeover.

Summary

Node.js hosting options are varied, with extensive ecosystems and prices
ranging from free to exorbitant. Personally, I like to write apps that are service
agnostic and could be hosted anywhere, but that has become more
challenging over recent years. We’ve reached a weird point where you should
probably choose a host before you write any code. We have numerous hosting
solutions, but many companies still select AWS because … many companies
select AWS!

359 Node.js: Novice to Ninja

https://kubernetes.io/
https://docs.docker.com/engine/swarm/

Whichever hosting route you choose, you can’t go wrong writing stateless
web apps. I may have mentioned that a few times before …

Node.js Application Deployment 360

Epilogue
Chapter

19

361 Node.js: Novice to Ninja

Congratulations! You’ve reached the end of the beginning of your Node.js
journey. You’ve learned a lot, and I hope this course jump-starts your
development while helping you avoid some of the pitfalls.

We’ve covered many topics, from command-line tools, debugging, web
applications, and modules, through to real-time, database-driven, multi-player
games. No one will fully grasp every topic on their first read, but knowing that
a solution exists is half the battle.

I hope you enjoy Node.js development. It has a lot of advantages, such as:

It’s quick to learn the basics and be productive.

Node.js exposes possibilities you may never have encountered in other
runtimes.

It allows web developers to leverage their client-side JavaScript skills to
create useful libraries, frameworks, command-line tools, and even desktop
apps.

Node.js programming can be fun.

Is Node.js for You?

Node.js blossomed from being a niche engine to an indispensable developer
runtime within a matter of years. Even those using other languages often have
Node.js installed, because it offers a range of tools you won’t necessarily find
elsewhere.

The reason: JavaScript. Web development has become the primary vehicle for
platforming applications, so it’s difficult to avoid browser-based coding. Using
the same language on the frontend and backend lowers the cognitive
overhead. Node.js won’t make you a full-stack developer overnight, but there’s
less context switching, and you’ll avoid simple errors such as using the wrong
quote character, forgetting a semicolon, or making the wrong method call.

Epilogue 362

1

2

3

Of course, Node.js isn’t without its criticisms:

Some programmers detest JavaScript.

No language is perfect, but JavaScript was developed in ten days, and it’s
unlikely Brendan Eich, its inventor, ever considered it might be used for full-
scale enterprise level applications. Some issues have been addressed with
ES6 and types in JavaScript compilers such as TypeScript.

Personally, I love JavaScript—warts and all. Those who complain loudest are
usually comparing it to their favorite language and have been bitten by
JavaScript’s oddities, such as prototypal inheritance. If it’s not to your taste,
either persevere or consider one of the many server-side alternatives.

npm is cumbersome.

npm is partly responsible for the success of Node.js. It’s easy to install, update,
and remove any of the 1.5 million packages. Understandably, not every
package is good, and some have been downright dangerous—laced with
malware and crypto-mining code. npm has addressed many issues, but others
will occur.

Your node_modules directory will also grow to many megabytes and, despite
recent optimizations, npm can still recursively download the same packages
across different projects. Package maintenance can become increasingly
laborious over the long term.

Remember, npm is just a tool. Only install the packages you need and you’ll
minimize the impact of third-party code.

CommonJS vs ES6 module mess.

Node.js is migrating toward ES6 modules, but the process has been painful
and some legacy packages may never support it. The situation is improving,
though, and I was pleasantly surprised by how few problems I encountered
while writing this book.

363 Node.js: Novice to Ninja

4

1

Asynchronous programming is a challenge.

You won’t necessarily encounter asynchronous programming in other
languages, and it’s easy to make mistakes that lead to application instability. I
devoted the whole of Chapter 9 to this topic, because it’s so important in
Node.js programs.

Understanding callbacks can be tricky for novice JavaScript coders, but it’s
impossible to avoid event handling either on the client or server. Promises and
async / await help, although I initially struggled to understand the concepts.

That said, asynchronous programming makes real-time web applications
possible. Instantly updated dashboards, live chat, and multi-player games are
far easier in Node.js.

Node.js isn’t as good/fast/popular/stable/secure as runtimeX.

There will always be alternatives that handle some aspect of application
programming in a better way. But Node.js is good enough in most respects for
web application and command-line utility development.

To quote C++ designer Bjarne Stroustrup: “There are only two kinds of
languages: the ones people complain about and the ones nobody uses.”

Is Deno Better?

Ryan Dahl released Deno in 2020 and it addresses many of his Node.js
regrets. Deno offers:

Better security. An application must be granted specific rights when it
needs access to environment variables, the file system, the network, and
other resources.

Native TypeScript support. You can write applications in JavaScript or
TypeScript without an additional third-party compiler.

Epilogue 364

https://deno.land/
https://www.youtube.com/watch?v=M3BM9TB-8yA
https://www.youtube.com/watch?v=M3BM9TB-8yA

ES6 modules only. Modules are loaded from a URL: there’s no npm
equivalent, and packages can be cached so there’s one instance on your
system across all projects.

Built-in tools. Linting, formatting, testing, benchmarking, bundling,
documentation generation, task running, and more are available from the
deno runtime.

Replicated browser APIs. Features such as window , addEventListener ,
Fetch , and web workers all work in Deno.

Replicated Node.js APIs. Deno supports features such as fs , events ,
http , os , process , stream , url , util , and CommonJS when running

in Node.js compatibility mode.

Deno is a great option, but it’s new and not as fast, as popular, or well
supported as Node.js. Perhaps we’ll all be using Deno in a decade’s time, and
Node.js will be consigned to the history books. But it’s too early to tell. There’s
no harm writing a few small utilities or example apps in Deno … but should you
adopt it for a long-term, mission-critical application when it’s difficult to find
programmers with more than a couple of months’ experience?

Deno is similar enough to Node.js that it’s easy to switch between the
runtimes. Learn Node.js today, then consider Deno tomorrow.

Thank You for Reading!

I hope you enjoyed this book and are ready to embark on the next stage of
your programming career. Check out some tips in the final video for this
course.

If you have any feedback or suggestions, please contact me directly on
Twitter @craigbuckler or send your message to SitePoint.

Best of luck!

365 Node.js: Novice to Ninja

https://www.sitepoint.com/premium/tech-talks/techexeter-2020/a-first-look-at-deno/
https://vimeo.com/sitepoint/download/707861438/3aa79388c9
https://vimeo.com/sitepoint/download/707861438/3aa79388c9
https://twitter.com/craigbuckler
https://www.sitepoint.com/contact-us/

1

2

3

4

5

1

2

3

1

2

3

4

Appendix A: Quiz Answers
Here are the solutions to the quizzes.

Chapter 1

d.

d. Other than some superficial syntactical similarities, JavaScript has no

technical relationship to Java whatsoever!

b. TypeScript can compile to JavaScript, but it’s a superset of the

JavaScript syntax so isn’t JavaScript itself!

c.

a.

Chapter 2

d.

b.

a.

Chapter 3

c.

d. … although c. is somewhat extreme!

b.

a.

Quiz Answers 366

5

1

2

3

4

5

1

2

3

4

5

1

2

d. Bonus points if you knew that Docker isn’t essential, although it could

make Node.js deployments easier!

Chapter 4

d.

d.

b.

a.

Well, I’m going to say c. It’s heavily opinionated, but I don’t believe any

developer who says they never use console.log() ! It’s not always the best

option and it’s too easy to go down a deep console logging rabbit hole, but

finding the cause of a bug is more important than the technique you used to

get there

Chapter 5

d.

c.

a.

c.

b.

Chapter 6

b.

a. But d. could be correct if you defined a parsing middleware function!

367 Node.js: Novice to Ninja

3

1

2

3

4

5

6

1

2

3

4

5

1

2

3

4

5

d.

Chapter 7

d.

b.

b.

c.

d. Bonus points if you realized that a. and b. would list all dependencies

in older versions of npm.

a.

Chapter 8

a.

c.

a.

b.

d.

Chapter 9

c.

d.

a.

a.

d.

Quiz Answers 368

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

Chapter 10

b.

d.

d.

a.

d.

Chapter 11

d.

a.

d.

b.

b.

Chapter 12

b.

d.

d.

a.

b.

369 Node.js: Novice to Ninja

	cover
	Node.js: Novice to Ninja
	Notice of Rights
	Notice of Liability
	Trademark Notice

	About Craig Buckler
	About SitePoint
	Table of Contents
	Preface
	Prerequisites
	Code Samples
	Tips, Notes, and Warnings
	Hey, You!
	Ahem, Excuse Me ...
	Make Sure You Always ...
	Watch Out!

	What is Node.js?
	
	Skip Ahead?
	JavaScript, JScript, ECMAScript, ES6, ES2015?

	Why Learn Node.js?
	It’s JavaScript
	JavaScript Alternatives

	It’s Fast
	It’s Real-time
	It’s Lightweight
	It’s Modular
	It’s Extendible
	It’s Open Source
	It’s Everywhere
	What About Deno?

	Summary
	Quiz

	Install Node.js
	
	Node Version Manager

	Choosing a Node.js Version
	How to Install Node.js on Linux (or Windows WSL2)
	Configuring npm Global Permissions on Linux

	How to Install Node.js on macOS
	How to Install Node.js on Windows
	How to Install Node.js on Other Devices
	Run JavaScript Commands in the Node.js REPL
	Summary
	Quiz

	Your First Node.js Application
	
	Your First Console App
	#!/What?

	Your First Web Server App
	Port 3000?

	Restarting Node.js Applications with Nodemon
	Executing Scripts from Windows Powershell

	Web Application Considerations
	Complexity Ahead
	Write Stateless Applications

	Summary
	Quiz

	How to Debug Node.js Scripts
	
	Skip Ahead?

	What is Debugging?
	How to Avoid Bugs
	Use a Good Code Editor
	Use a Code Linter
	Use Source Control
	Adopt an Issue-tracking System
	Use Test-driven Development

	Node.js Debugging Environment Variables
	Node.js Debugging Command-line Options
	Console Debugging
	Never Use console.log()?!

	Node.js util.debuglog
	Debugging with Logging Modules
	Node.js V8 Inspector
	Debugging Node.js Apps with Chrome
	Not Using Chrome?
	Remote Target
	Debugger Statement

	Debugging Node.js Apps with VS Code
	Advanced Debugging Configuration

	Other Node.js Debugging Tools
	Exercise: Debugging webhello.js
	Summary
	Debugging Terminology

	Quiz

	Getting Started with Express
	
	Why use Express?
	Express Version

	Create a New Node.js Project
	Create a New Git Repository
	Semantic Versioning

	Switch to ES6 Modules
	Install Express
	Runtime Dependencies and Development Dependencies

	Create the Express Entry Script
	What Is Routing?

	Should You Switch to HTTPS?
	Serve Static Files
	Efficient Static Assets

	Express Middleware Functions
	Define Working Directories
	Compressing HTTP Responses
	Disable Express Identification
	Handle 404 Not Found Errors
	Add an HTML Template Engine
	Template Performance

	Advanced Routing
	Routing Path Expressions
	Routing Path Parameters
	HTTP Route Methods
	Creating a Route Handler

	Exercises
	Summary
	Quiz

	Processing Form Data with Express
	
	Code Examples
	Sanitize User Input

	Processing HTTP GET Query Strings
	Processing HTTP Post Body Data
	The body-parser Module

	Processing Uploaded Files
	Callback Functions

	Exercises
	Summary
	Quiz

	How to Use the npm Node Package Manager
	
	npm Alternatives

	Global vs Local Packages
	npm link

	npm Help
	npm Configuration
	Project Initialization
	Semantic Versioning
	Project Dependencies
	Development Dependencies

	Searching for Packages
	Development Dependency Limits?

	Installing Packages
	.gitignore node_modules
	Shortcut Aliases
	Semantic Constraints

	“No-install” Execution
	npx Local Execution

	Listing Packages
	Finding Outdated Packages
	Update npm with npm

	Removing Packages
	Using npm Scripts
	Special Scripts
	Pre and Post Scripts
	Life Cycle Scripts
	Sophisticated Scripting

	Publishing Packages
	Publication Preparation
	Two-factor Authentication
	Publishing Tips

	Exercises
	Summary
	Quiz

	Using ES2015 and CommonJS Modules
	
	Skip Ahead?

	CommonJS
	ES2015 Modules (ESM)
	Importing External URLs

	Comparison of CommonJS and ES2015 Modules
	Importing CommonJS Modules in ES2015
	Requiring ES2015 Modules in CommonJS
	Using ES2015 Modules in Browsers
	Summary
	Quiz

	Asynchronous Programming in Node.js
	
	Single-threaded Non-blocking I/O Event-looping What?
	Callbacks in Action

	The Event Loop
	Avoid Blocking the Event Loop

	Callback Conundrums
	A Function Must be 100% Synchronous or 100% Asynchronous
	process.nextTick()
	Callback Hell

	Promises
	util.promisify()
	then() Functions Are Promisified
	Parallel Promises
	Promising Problems

	async/await
	Promise.all() is Still Necessary
	try/catch is Ugly
	Asynchronous Awaits in Synchronous Loops

	Exercises
	HTTP Requests

	Summary
	Quiz

	Using Database Storage
	
	Skip Ahead?

	A Database-driven Web Application Example
	Installing and Configuring Database Software

	MongoDB
	Start the MongoDB Application
	Your Own MongoDB Installation?

	MongoDB Functionality
	What Is a Database Index?

	Stop the MongoDB Application

	MySQL
	Start the MySQL Application
	Your Own MySQL Installation?

	MySQL Functionality
	No Time?
	UNHEX? INET_ANON?
	Never Build SQL Strings!

	Stop the MySQL Application

	Sequelize ORM
	Start the Sequelize ORM Application
	Your Own MySQL Installation?

	Sequelize ORM Functionality

	How to Choose the Right Database
	Native vs ORM Drivers

	Exercises
	Summary
	Quiz

	Using WebSockets
	
	Skip Ahead?

	What Are WebSockets?
	Example WebSocket Chat Application
	WebSocket Walkthrough
	Advanced WebSockets Considerations
	Multiple WebSocket Servers
	What is Pub–sub?

	Exercise
	Summary
	Quiz

	Useful Node.js APIs
	
	Module node: URL Imports

	Process
	exit Events

	OS
	Util
	URL
	File System
	fs and path

	Events
	Events in Client-side JavaScript

	Streams
	Worker Threads
	Asynchronous Calculations
	Workers and Event Loops

	Child Processes
	A Real-world Example

	Clusters
	Write Stateless Applications

	Exercises
	Summary
	Quiz

	Example Real-time Multiplayer Quiz: Overview
	
	Source Code
	Quizzing Quick Start
	What is Docker?

	Summary

	Example Real-time Multiplayer Quiz: Architecture
	
	Why Develop Using Multiple Servers?
	1. One PostgreSQL Database Server
	2. Two Express HTTP Web Servers
	3. Three WebSocket Servers
	4. One Traefic Load Balancer
	5. Adminer Database Client
	Docker Development Environment
	Docker Production Environment
	Is Docker Compose Suited to Production?

	Summary

	Example Real-time Multiplayer Quiz: Express Code
	
	Database Library
	Question Database Initialization
	Initializing Data on Application Start?
	Why Does the Number of Imported Questions Vary?
	Native Node.js Fetch()
	Sequential Database INSERTs

	Starting a New Game
	Joining a Game
	Quiz Page
	Summary

	Example Real-time Multiplayer Quiz: WebSocket Code
	
	Initiating a WebSocket Connection
	WebSocket Message Format
	PostgreSQL Pub–sub

	Game Logic
	Joining a Game
	Why Run a create() Method?

	Starting a Game
	Answering a Question
	Leaving a Game

	Exercises
	Summary

	Node.js Tools and Resources
	
	Perfect Package Pursuit
	Development Tools
	Testing
	Logging
	Full-stack Frameworks
	Server-side Frameworks
	Node.js in Client-side Frameworks

	Web Publishing, Content Management Systems, and Blogging
	Headless Content Management Systems
	Static Site Generators
	Database Drivers
	Templating
	Command Line
	File System
	Network
	WebSockets
	Images
	Email
	Security and Authentication
	Summary

	Node.js Application Deployment
	
	Pages vs Applications
	Node.js Application Preparation
	Dedicated Server Hosting
	sudo-not
	HTTP and HTTPS Considerations
	Process Management
	PM2 Port Clashes

	Use a Reverse Proxy

	Static Site Hosting (Jamstack)
	Build PHP-powered Static Sites with Node.js

	Serverless/Lambda Functions
	AWS Everywhere

	Container Hosting
	Summary

	Epilogue
	
	Is Node.js for You?
	Is Deno Better?
	Thank You for Reading!

	Quiz Answers
	
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12

